Expression analysis of five critical transcription factors (TFs) OsbHLH148, OsbZIP72, OsMYB2, OsNAC6 and TRAB1 in response to drought stress in contrasting Iranian rice genotypes

Q3 Agricultural and Biological Sciences
A. Taghipour, A. Tarang, N. Zare, Moslem Pourebrahim, R. Seighalani, Mahdi Ghasemi Selakjani
{"title":"Expression analysis of five critical transcription factors (TFs) OsbHLH148, OsbZIP72, OsMYB2, OsNAC6 and TRAB1 in response to drought stress in contrasting Iranian rice genotypes","authors":"A. Taghipour, A. Tarang, N. Zare, Moslem Pourebrahim, R. Seighalani, Mahdi Ghasemi Selakjani","doi":"10.21475/POJ.09.05.16.PNE158","DOIUrl":null,"url":null,"abstract":"Drought stress causes great damage to the rice cultivation all over the world. Specific transcription factors (TFs) can regulate the expression of stress-related genes. In this research, we investigated the effect of drought stress on the expression of five specific transcription factors OsbHLH148, OsbZIP72, OsMYB2, OsNAC6 and TRAB1 at vegetative and reproductive stages in two Iranian rice cultivars with drought-sensitive and tolerant backgrounds; Hashemi and Neda. Using a real-time quantitative PCR (qPCR) approach, this study revealed that the expression of OsbZIP72, OsMYB2 and OsNAC6 were increased significantly in the Hashemi cultivar under drought stress at the vegetative stage. It seems that these three genes paly their roles in the drought sensitive cultivar Hashemi at the vegetative stage and do not play any role at the reproductive stage as the most sensitive stage to drought stress. The expression of TRAB1 was increased in Hashemi cultivar at the reproductive stage, while the expression of TRAB1 was decreased in Neda cultivar at the vegetative stage. This indicates that the expression of TRAB1 could respond sensitively to drought stress at the vegetative stage. Furthermore, there were statistically significant increases in expression of OsbHLH148, OsbZIP72, OsMYB2, OsNAC6 and TRAB1 in Neda (tolerant) cultivar at the reproductive stage. Therefore, our study suggests that these five genes might be involved in drought tolerance of this cultivar to drought stress at the reproductive stage. Thus, they could be used as viable candidate TFs to develop additional varieties of drought-tolerant transgenic rice.","PeriodicalId":54602,"journal":{"name":"Plant Omics","volume":"10 1","pages":"327-333"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Omics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21475/POJ.09.05.16.PNE158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Drought stress causes great damage to the rice cultivation all over the world. Specific transcription factors (TFs) can regulate the expression of stress-related genes. In this research, we investigated the effect of drought stress on the expression of five specific transcription factors OsbHLH148, OsbZIP72, OsMYB2, OsNAC6 and TRAB1 at vegetative and reproductive stages in two Iranian rice cultivars with drought-sensitive and tolerant backgrounds; Hashemi and Neda. Using a real-time quantitative PCR (qPCR) approach, this study revealed that the expression of OsbZIP72, OsMYB2 and OsNAC6 were increased significantly in the Hashemi cultivar under drought stress at the vegetative stage. It seems that these three genes paly their roles in the drought sensitive cultivar Hashemi at the vegetative stage and do not play any role at the reproductive stage as the most sensitive stage to drought stress. The expression of TRAB1 was increased in Hashemi cultivar at the reproductive stage, while the expression of TRAB1 was decreased in Neda cultivar at the vegetative stage. This indicates that the expression of TRAB1 could respond sensitively to drought stress at the vegetative stage. Furthermore, there were statistically significant increases in expression of OsbHLH148, OsbZIP72, OsMYB2, OsNAC6 and TRAB1 in Neda (tolerant) cultivar at the reproductive stage. Therefore, our study suggests that these five genes might be involved in drought tolerance of this cultivar to drought stress at the reproductive stage. Thus, they could be used as viable candidate TFs to develop additional varieties of drought-tolerant transgenic rice.
5个关键转录因子OsbHLH148、OsbZIP72、OsMYB2、OsNAC6和TRAB1在干旱胁迫下的表达分析
在世界范围内,干旱胁迫对水稻种植造成了巨大的危害。特异性转录因子(TFs)可以调控应激相关基因的表达。在本研究中,我们研究了干旱胁迫对两个干旱敏感和耐旱的伊朗水稻品种营养和生殖阶段5个特异性转录因子OsbHLH148、OsbZIP72、OsMYB2、OsNAC6和TRAB1表达的影响;Hashemi和Neda。采用实时荧光定量PCR (qPCR)方法分析发现,干旱胁迫下哈希米品种营养期OsbZIP72、OsMYB2和OsNAC6的表达量显著升高。这三个基因在干旱敏感品种哈希米的营养阶段发挥作用,而在对干旱胁迫最敏感的生殖阶段没有任何作用。TRAB1在Hashemi品种的生殖期表达升高,而在Neda品种的营养期表达降低。这说明TRAB1的表达对干旱胁迫有敏感的响应。此外,耐药品种Neda生殖期的OsbHLH148、OsbZIP72、OsMYB2、OsNAC6和TRAB1的表达均有统计学意义的升高。因此,我们的研究表明,这五个基因可能参与了该品种在生殖阶段对干旱胁迫的耐旱性。因此,它们可以作为可行的候选TFs来开发更多的耐旱转基因水稻品种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Omics
Plant Omics 生物-植物科学
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: Plant OMICS is an international, peer-reviewed publication that gathers and disseminates fundamental and applied knowledge in almost all area of molecular plant and animal biology, particularly OMICS-es including: Coverage extends to the most corners of plant and animal biology, including molecular biology, genetics, functional and non-functional molecular breeding and physiology, developmental biology, and new technologies such as vaccines. This journal also covers the combination of many areas of molecular plant and animal biology. Plant Omics is also exteremely interested in molecular aspects of stress biology in plants and animals, including molecular physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信