Composite hydrogels based on calcium alginate and polyethyleneimine for wastewater treatment

IF 2.702 Q1 Materials Science
Johannes Berg, Sebastian Seiffert
{"title":"Composite hydrogels based on calcium alginate and polyethyleneimine for wastewater treatment","authors":"Johannes Berg,&nbsp;Sebastian Seiffert","doi":"10.1002/pol.20230215","DOIUrl":null,"url":null,"abstract":"<p>Water shortage has risen severely in recent years, confronting mankind with a worldwide challenge, especially as the accessible water resources are further limited by diverse contamination. The most widespread industrial process for water treatment is the activated sludge process, in which, however, excessive sludge production has become an enormous environmental problem worldwide. To overcome this problem, hydrogels possess outstanding potential in view of adsorptive removal of contaminants like heavy metal ions, fertilizers, and dyes. In this paper, we report about the synthesis of biobased alginate hydrogel beads along with polyethyleneimine-modified composite hydrogels for water treatment. The adsorption of methylene blue as a positively charged and of congo red as a negatively charged model dye is quantitatively investigated, both separately and in combination. In addition, the pH-dependent adsorption of the dyes is determined. The use of alginate-based hydrogel systems combines several prospects: they are bio-based, inexpensive, easily available to a sufficient extent, sustainable, and are applicable in a broad range of wastewater treatment by its charged groups.</p>","PeriodicalId":199,"journal":{"name":"Journal of Polymer Science Part A: Polymer Chemistry","volume":"61 18","pages":"2203-2222"},"PeriodicalIF":2.7020,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pol.20230215","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science Part A: Polymer Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2

Abstract

Water shortage has risen severely in recent years, confronting mankind with a worldwide challenge, especially as the accessible water resources are further limited by diverse contamination. The most widespread industrial process for water treatment is the activated sludge process, in which, however, excessive sludge production has become an enormous environmental problem worldwide. To overcome this problem, hydrogels possess outstanding potential in view of adsorptive removal of contaminants like heavy metal ions, fertilizers, and dyes. In this paper, we report about the synthesis of biobased alginate hydrogel beads along with polyethyleneimine-modified composite hydrogels for water treatment. The adsorption of methylene blue as a positively charged and of congo red as a negatively charged model dye is quantitatively investigated, both separately and in combination. In addition, the pH-dependent adsorption of the dyes is determined. The use of alginate-based hydrogel systems combines several prospects: they are bio-based, inexpensive, easily available to a sufficient extent, sustainable, and are applicable in a broad range of wastewater treatment by its charged groups.

Abstract Image

海藻酸钙与聚乙烯亚胺复合水凝胶用于废水处理
近年来,水资源短缺问题日益严重,人类面临着全球性的挑战,特别是可获得的水资源受到各种污染的进一步限制。最广泛的工业水处理工艺是活性污泥法,然而,在活性污泥法中,过量的污泥产生已成为世界范围内一个巨大的环境问题。为了克服这一问题,水凝胶在吸附去除重金属离子、肥料和染料等污染物方面具有突出的潜力。本文报道了生物基海藻酸盐水凝胶珠与聚乙烯亚胺改性复合水凝胶的合成。对带正电的亚甲基蓝和带负电的刚果红模型染料的吸附进行了定量研究。此外,还测定了染料的ph依赖性吸附。海藻酸盐为基础的水凝胶系统的使用结合了几个前景:它们是生物基的,价格低廉,容易获得足够的程度,可持续的,并且适用于其带电基团的广泛废水处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
审稿时长
1.8 months
期刊介绍: Part A: Polymer Chemistry is devoted to studies in fundamental organic polymer chemistry and physical organic chemistry. This includes all related topics (such as organic, bioorganic, bioinorganic and biological chemistry of monomers, polymers, oligomers and model compounds, inorganic and organometallic chemistry for catalysts, mechanistic studies, supramolecular chemistry aspects relevant to polymer...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信