A coarse geometric expansion of a variant of Arthur’s truncated traces and some applications

IF 0.7 3区 数学 Q2 MATHEMATICS
Hongjie Yu
{"title":"A coarse geometric expansion of a variant of\nArthur’s truncated traces and some applications","authors":"Hongjie Yu","doi":"10.2140/pjm.2022.321.193","DOIUrl":null,"url":null,"abstract":"Let F be a global function field with constant field $\\mathbb{F}_q$. Let G be a reductive group over $\\mathbb{F}_q$. We establish a variant of Arthur's truncated kernel for G and for its Lie algebra which generalizes Arthur's original construction. We establish a coarse geometric expansion for our variant truncation. As applications, we consider some existence and uniqueness problems of some cuspidal automorphic representations for the functions field of the projective line $\\mathbb{P}^1_{\\mathbb{F}_q}$ with two points of ramifications.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.321.193","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let F be a global function field with constant field $\mathbb{F}_q$. Let G be a reductive group over $\mathbb{F}_q$. We establish a variant of Arthur's truncated kernel for G and for its Lie algebra which generalizes Arthur's original construction. We establish a coarse geometric expansion for our variant truncation. As applications, we consider some existence and uniqueness problems of some cuspidal automorphic representations for the functions field of the projective line $\mathbb{P}^1_{\mathbb{F}_q}$ with two points of ramifications.
阿瑟截断迹的一种变体的粗略几何展开及其一些应用
设F为一个具有恒定域$\mathbb{F}_q$的全局函数域。设G是$\mathbb{F}_q$上的约简群。我们为G及其李代数建立了Arthur截断核的一个变体,它推广了Arthur的原始构造。我们建立了变量截断的粗几何展开式。作为应用,我们研究了具有两点分支的射影线$\mathbb{P}^1_{\mathbb{F}_q}$的函数域的一些逆自同态表示的存在唯一性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信