{"title":"NON-SINGULAR EXTENSIONS OF MORSE FUNCTIONS ON DISCONNECTED SURFACES","authors":"Kentaro Iwamoto","doi":"10.2206/KYUSHUJM.75.23","DOIUrl":null,"url":null,"abstract":"In this paper, we study non-singular extensions of Morse functions on closed orientable surfaces. By a non-singular extension of such a Morse function, we mean an extension to a function without critical points on some compact orientable 3-manifold having as boundary the given surface. In 1977, Curley characterized the existence of non-singular extensions of non-singular boundary germs in terms of combinatorics on associated labeled Reeb graphs. We apply Curley’s result to show that every Morse function on a closed orientable (possibly disconnected) surface has a non-singular extension to a 3-manifold that is connected.","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/KYUSHUJM.75.23","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study non-singular extensions of Morse functions on closed orientable surfaces. By a non-singular extension of such a Morse function, we mean an extension to a function without critical points on some compact orientable 3-manifold having as boundary the given surface. In 1977, Curley characterized the existence of non-singular extensions of non-singular boundary germs in terms of combinatorics on associated labeled Reeb graphs. We apply Curley’s result to show that every Morse function on a closed orientable (possibly disconnected) surface has a non-singular extension to a 3-manifold that is connected.
期刊介绍:
The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total.
More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.