{"title":"OKADA'S THEOREM AND MULTIPLE DIRICHLET SERIES","authors":"Y. Hamahata","doi":"10.2206/kyushujm.74.429","DOIUrl":null,"url":null,"abstract":"Let k1, . . . , kr be positive integers. Let q1, . . . , qr be pairwise coprime positive integers with qi > 2 (i = 1, . . . , r ), and set q = q1 · · · qr . For each i = 1, . . . , r , let Ti be a set of φ(qi )/2 representatives mod qi such that the union Ti ∪ (−Ti ) is a complete set of coprime residues mod qi . Let K be an algebraic number field over which the qth cyclotomic polynomial 8q is irreducible. Then, φ(q)/2r numbers r ∏ i=1 dki−1 dzi i (cot π zi )|zi=ai /qi (ai ∈ Ti , i = 1, . . . , r) are linearly independent over K . As an application, a generalization of the Baker–Birch– Wirsing theorem on the non-vanishing of the multiple Dirichlet series L(s1, . . . , sr ; f ) with periodic coefficients at (s1, . . . , sr )= (k1, . . . , kr ) is proven under a parity condition.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.74.429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Let k1, . . . , kr be positive integers. Let q1, . . . , qr be pairwise coprime positive integers with qi > 2 (i = 1, . . . , r ), and set q = q1 · · · qr . For each i = 1, . . . , r , let Ti be a set of φ(qi )/2 representatives mod qi such that the union Ti ∪ (−Ti ) is a complete set of coprime residues mod qi . Let K be an algebraic number field over which the qth cyclotomic polynomial 8q is irreducible. Then, φ(q)/2r numbers r ∏ i=1 dki−1 dzi i (cot π zi )|zi=ai /qi (ai ∈ Ti , i = 1, . . . , r) are linearly independent over K . As an application, a generalization of the Baker–Birch– Wirsing theorem on the non-vanishing of the multiple Dirichlet series L(s1, . . . , sr ; f ) with periodic coefficients at (s1, . . . , sr )= (k1, . . . , kr ) is proven under a parity condition.