OKADA'S THEOREM AND MULTIPLE DIRICHLET SERIES

Pub Date : 2020-01-01 DOI:10.2206/kyushujm.74.429
Y. Hamahata
{"title":"OKADA'S THEOREM AND MULTIPLE DIRICHLET SERIES","authors":"Y. Hamahata","doi":"10.2206/kyushujm.74.429","DOIUrl":null,"url":null,"abstract":"Let k1, . . . , kr be positive integers. Let q1, . . . , qr be pairwise coprime positive integers with qi > 2 (i = 1, . . . , r ), and set q = q1 · · · qr . For each i = 1, . . . , r , let Ti be a set of φ(qi )/2 representatives mod qi such that the union Ti ∪ (−Ti ) is a complete set of coprime residues mod qi . Let K be an algebraic number field over which the qth cyclotomic polynomial 8q is irreducible. Then, φ(q)/2r numbers r ∏ i=1 dki−1 dzi i (cot π zi )|zi=ai /qi (ai ∈ Ti , i = 1, . . . , r) are linearly independent over K . As an application, a generalization of the Baker–Birch– Wirsing theorem on the non-vanishing of the multiple Dirichlet series L(s1, . . . , sr ; f ) with periodic coefficients at (s1, . . . , sr )= (k1, . . . , kr ) is proven under a parity condition.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.74.429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Let k1, . . . , kr be positive integers. Let q1, . . . , qr be pairwise coprime positive integers with qi > 2 (i = 1, . . . , r ), and set q = q1 · · · qr . For each i = 1, . . . , r , let Ti be a set of φ(qi )/2 representatives mod qi such that the union Ti ∪ (−Ti ) is a complete set of coprime residues mod qi . Let K be an algebraic number field over which the qth cyclotomic polynomial 8q is irreducible. Then, φ(q)/2r numbers r ∏ i=1 dki−1 dzi i (cot π zi )|zi=ai /qi (ai ∈ Ti , i = 1, . . . , r) are linearly independent over K . As an application, a generalization of the Baker–Birch– Wirsing theorem on the non-vanishing of the multiple Dirichlet series L(s1, . . . , sr ; f ) with periodic coefficients at (s1, . . . , sr )= (k1, . . . , kr ) is proven under a parity condition.
分享
查看原文
冈田定理和多重狄利克雷级数
设k1。, kr是正整数。让q1…, qr是具有qi > 2 (i = 1,…)的成对素数正整数。, r),令q = q1···qr。对于每个i = 1,…, r,设Ti是φ(qi)/2个代表模qi的集合,使得并集Ti∪(−Ti)是模qi的素数残数的完备集。设K是一个代数数域,在这个代数数域上,第K个环多项式8q是不可约的。则φ(q)/2r数r∏i=1 dki−1 dzi i (cot π zi)|zi=ai /qi (ai∈Ti, i=1,…, r)在K上线性无关。作为一个应用,推广了Baker-Birch - Wirsing定理关于多重Dirichlet级数L(s1,…)的不灭性。, sr;F)周期系数在(s1,…), sr)= (k1,…, kr)是在宇称条件下证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信