CONNECTION FORMULAS RELATED WITH APPELL'S F2, HORN'S H2 AND OLSSON'S FP FUNCTIONS

Pub Date : 2020-01-01 DOI:10.2206/kyushujm.74.15
K. Mimachi
{"title":"CONNECTION FORMULAS RELATED WITH APPELL'S F2, HORN'S H2 AND OLSSON'S FP FUNCTIONS","authors":"K. Mimachi","doi":"10.2206/kyushujm.74.15","DOIUrl":null,"url":null,"abstract":"Some of the connection problems associated with the system of differential equations E2, which is satisfied by Appell’s F2 function, are solved by using integrals of Euler type. The present results give another proof of connection formulas related with Appell’s F2, Horn’s H2 and Olsson’s FP functions, which are obtained by Olsson. 0. Introduction Appell’s hypergeometric function F2 is the analytic continuation of F2(a, b1, b2, c1, c2; x, y)= ∑ m,n≥0 (a)m+n(b1)m(b2)n m!n!(c1)m(c2)n xm yn, |x | + |y|< 1, where (a)n = 0(a + n)/0(a), and satisfies the system E2 of rank four [AKdF, Er]: (E2)  [ x(1− x) ∂2 ∂x2 − xy ∂2 ∂x∂y + {c1 − (a + b1 + 1)x} ∂ ∂x − b1 y ∂ ∂y − ab1 ] F = 0, [ y(1− y) ∂2 ∂y2 − xy ∂2 ∂x∂y + {c2 − (a + b2 + 1)y} ∂ ∂y − b2x ∂ ∂x − ab2 ] F = 0, which is defined on the space C2\\ { {x = 0} ∪ {x = 1} ∪ {y = 0} ∪ {y = 1} ∪ {x + y = 1} } ⊂ (P1)2. In [Ol], Olsson shows that a fundamental set of solutions of E2 around the point (0, 1) in the case |x/(1− y)|< 1 or that around the point (0,∞) is given by Horn’s hypergeometric function H2 and Olsson’s hypergeometric function FP , while that around the point (0, 0) is given by F2. Moreover, he also derives some connection formulas related with F2, H2 and 2010 Mathematics Subject Classification: Primary 33C60; Secondary 33C65, 33C70.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.74.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Some of the connection problems associated with the system of differential equations E2, which is satisfied by Appell’s F2 function, are solved by using integrals of Euler type. The present results give another proof of connection formulas related with Appell’s F2, Horn’s H2 and Olsson’s FP functions, which are obtained by Olsson. 0. Introduction Appell’s hypergeometric function F2 is the analytic continuation of F2(a, b1, b2, c1, c2; x, y)= ∑ m,n≥0 (a)m+n(b1)m(b2)n m!n!(c1)m(c2)n xm yn, |x | + |y|< 1, where (a)n = 0(a + n)/0(a), and satisfies the system E2 of rank four [AKdF, Er]: (E2)  [ x(1− x) ∂2 ∂x2 − xy ∂2 ∂x∂y + {c1 − (a + b1 + 1)x} ∂ ∂x − b1 y ∂ ∂y − ab1 ] F = 0, [ y(1− y) ∂2 ∂y2 − xy ∂2 ∂x∂y + {c2 − (a + b2 + 1)y} ∂ ∂y − b2x ∂ ∂x − ab2 ] F = 0, which is defined on the space C2\ { {x = 0} ∪ {x = 1} ∪ {y = 0} ∪ {y = 1} ∪ {x + y = 1} } ⊂ (P1)2. In [Ol], Olsson shows that a fundamental set of solutions of E2 around the point (0, 1) in the case |x/(1− y)|< 1 or that around the point (0,∞) is given by Horn’s hypergeometric function H2 and Olsson’s hypergeometric function FP , while that around the point (0, 0) is given by F2. Moreover, he also derives some connection formulas related with F2, H2 and 2010 Mathematics Subject Classification: Primary 33C60; Secondary 33C65, 33C70.
分享
查看原文
与appeell的f2、horn的h2和olsson的fp函数相关的连接公式
本文用欧拉型积分法解决了由apappell的F2函数满足的微分方程组E2的一些连接问题。本文的结果再次证明了由Olsson. 0得到的与Appell 's F2、Horn 's H2和Olsson 's FP函数相关的连接公式。Appell的超几何函数F2是F2(a, b1, b2, c1, c2;x, y) =∑m, n≥0 m (a) + n (b1) m (b2) n m ! n ! (c1) m (c2) n xm yn, x y | + | | | < 1, (a) n = 0 (a + n) / 0 (a),并满足系统E2的排名四(AKdF,呃):(E2)[x(1−x)∂2∂x2−xy∂2∂x∂y + {c1−(+ b1 + 1) x}∂∂x−b1 y∂∂y−有所)F = 0, [y(1−y)∂2∂y2−xy∂2∂x∂y + {c2−(+ b2 + 1) y}∂∂y−b2x∂∂x−ab2) F = 0,这是空间上定义c2 \ {{x = 0}∪{x = 1}∪{y = 0}∪{y = 1}∪{x + y = 1}}⊂(P1) 2。在[Ol]中,Olsson证明了当|x/(1−y)|< 1或(0,∞)时E2绕点(0,1)的基本解集由Horn的超几何函数H2和Olsson的超几何函数FP给出,而绕点(0,0)的基本解集由F2给出。并推导出F2、H2与2010数学学科分类相关的关联公式:Primary 33C60;次级33C65, 33C70。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信