ON PROPER HOLOMORPHIC MAPPINGS BETWEEN TWO EQUIDIMENSIONAL FBH-TYPE DOMAINS

IF 0.6 4区 数学 Q3 MATHEMATICS
A. Kodama
{"title":"ON PROPER HOLOMORPHIC MAPPINGS BETWEEN TWO EQUIDIMENSIONAL FBH-TYPE DOMAINS","authors":"A. Kodama","doi":"10.2206/kyushujm.74.149","DOIUrl":null,"url":null,"abstract":"We introduce a new class of domains Dn,m(μ, p), called FBH-type domains, in Cn × Cm , where 0< μ ∈ R and p ∈ N. In the special case of p = 1, these domains are just the Fock–Bargmann–Hartogs domains Dn,m(μ) in Cn × Cm introduced by Yamamori. In this paper we obtain a complete description of an arbitrarily given proper holomorphic mapping between two equidimensional FBH-type domains. In particular, we prove that the holomorphic automorphism group Aut(Dn,m(μ, p)) of any FBH-type domain Dn,m(μ, p) with p 6= 1 is a Lie group isomorphic to the compact connected Lie group U (n)×U (m). This tells us that the structure of Aut(Dn,m(μ, p)) with p 6= 1 is essentially different from that of Aut(Dn,m(μ)).","PeriodicalId":49929,"journal":{"name":"Kyushu Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyushu Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.74.149","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new class of domains Dn,m(μ, p), called FBH-type domains, in Cn × Cm , where 0< μ ∈ R and p ∈ N. In the special case of p = 1, these domains are just the Fock–Bargmann–Hartogs domains Dn,m(μ) in Cn × Cm introduced by Yamamori. In this paper we obtain a complete description of an arbitrarily given proper holomorphic mapping between two equidimensional FBH-type domains. In particular, we prove that the holomorphic automorphism group Aut(Dn,m(μ, p)) of any FBH-type domain Dn,m(μ, p) with p 6= 1 is a Lie group isomorphic to the compact connected Lie group U (n)×U (m). This tells us that the structure of Aut(Dn,m(μ, p)) with p 6= 1 is essentially different from that of Aut(Dn,m(μ)).
两个等维fbh型域间的真全纯映射
我们在Cn × Cm中引入了一类新的域Dn,m(μ, p),称为fbh型域,其中0< μ∈R, p∈n。在p = 1的特殊情况下,这些域正是Yamamori在Cn × Cm中引入的Fock-Bargmann-Hartogs域Dn,m(μ)。本文给出了两个等维fbh型域之间任意给定的固有全纯映射的完整描述。特别地,我们证明了任意fbh型定义域Dn,m(μ, p)且p 6= 1的全纯自同构群Aut(Dn,m(μ, p))是紧连通李群U (n)×U (m)同构的李群,这说明了当p 6= 1时Aut(Dn,m(μ, p))的结构与Aut(Dn,m(μ))的结构本质上是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: The Kyushu Journal of Mathematics is an academic journal in mathematics, published by the Faculty of Mathematics at Kyushu University since 1941. It publishes selected research papers in pure and applied mathematics. One volume, published each year, consists of two issues, approximately 20 articles and 400 pages in total. More than 500 copies of the journal are distributed through exchange contracts between mathematical journals, and available at many universities, institutes and libraries around the world. The on-line version of the journal is published at "Jstage" (an aggregator for e-journals), where all the articles published by the journal since 1995 are accessible freely through the Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信