ESTIMATES FOR THE EIGENVALUES OF THE DRIFTING LAPLACIAN ON SOME COMPLETE RICCI SOLITONS

Pub Date : 2018-01-01 DOI:10.2206/KYUSHUJM.72.143
Lingzhong Zeng
{"title":"ESTIMATES FOR THE EIGENVALUES OF THE DRIFTING LAPLACIAN ON SOME COMPLETE RICCI SOLITONS","authors":"Lingzhong Zeng","doi":"10.2206/KYUSHUJM.72.143","DOIUrl":null,"url":null,"abstract":"Ricci solitons are the self-similar solutions to the Ricci flow, which play an important role in understanding the singularity dilations of the Ricci flow. In this paper, we investigate eigenvalues of the Dirichlet problem of a drifting Laplacian on some important complete Ricci solitons: the product shrinking Ricci soliton, cigar soliton, and so on. Since eigenvalues are invariant of isometries, we can give the estimates for the eigenvalues of a drifting Laplacian on the rotationally invariant shrinking solitons. In addition, we also obtain a sharp upper bound of the kth eigenvalue of the a drifting Laplacian on the product Ricci soliton in the sense of order k.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2206/KYUSHUJM.72.143","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/KYUSHUJM.72.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Ricci solitons are the self-similar solutions to the Ricci flow, which play an important role in understanding the singularity dilations of the Ricci flow. In this paper, we investigate eigenvalues of the Dirichlet problem of a drifting Laplacian on some important complete Ricci solitons: the product shrinking Ricci soliton, cigar soliton, and so on. Since eigenvalues are invariant of isometries, we can give the estimates for the eigenvalues of a drifting Laplacian on the rotationally invariant shrinking solitons. In addition, we also obtain a sharp upper bound of the kth eigenvalue of the a drifting Laplacian on the product Ricci soliton in the sense of order k.
分享
查看原文
某些完全里奇孤子上漂移拉普拉斯特征值的估计
Ricci孤子是Ricci流的自相似解,它对理解Ricci流的奇异膨胀起着重要的作用。研究了一类重要的完全Ricci孤子(积缩Ricci孤子、雪茄孤子等)上漂移拉普拉斯算子Dirichlet问题的特征值。由于特征值在等距上是不变的,我们可以给出一个漂移拉普拉斯在旋转不变收缩孤子上的特征值的估计。此外,我们还得到了乘积Ricci孤子在k阶意义上的漂移拉普拉斯算子的第k个特征值的明显上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信