Phenol removal using pulsation bubble column with inverse fluidization airlift loop reactor

IF 1 4区 工程技术 Q4 CHEMISTRY, APPLIED
Alias Abdul
{"title":"Phenol removal using pulsation bubble column with inverse fluidization airlift loop reactor","authors":"Alias Abdul","doi":"10.2298/ciceq200312028a","DOIUrl":null,"url":null,"abstract":"Phenol and phenolic compounds are omnipresent organic contaminants which are sent out to water bodies and wastewater systems produced from industrial processes, and they require specific attention due to their extraordinary features such as high toxicity, carcinogenic characteristics, and ability to accumulate, which affects the health of humans and the environment. In this practical study, the integrated system of a pulsation bubble column with an inverse fluidization air loop reactor was tested to remove phenol. The test platform was made and operated with a bubble column containing at its upper end an electrical solenoid valve engaged via at least two timers, and connected to the air loop reactor consisting of an outer rectangular tube and an internal draft tube by one-way valve, where the granular activated carbon is put as an adsorbent material in the annulus region between the inner and outer tube. The effects of various parameters [molar ratio of Phenol to H2O2 (1/10, 1/15 and 1/20), airflow rate (5-20 L/min), remediation time (5-60 min), initial phenol concentration (10- 150 mg L-1) have been studied. Removing 90% of the contaminated phenol as a result of this study may represent a partial solution to the ecological problem.","PeriodicalId":9716,"journal":{"name":"Chemical Industry & Chemical Engineering Quarterly","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry & Chemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/ciceq200312028a","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Phenol and phenolic compounds are omnipresent organic contaminants which are sent out to water bodies and wastewater systems produced from industrial processes, and they require specific attention due to their extraordinary features such as high toxicity, carcinogenic characteristics, and ability to accumulate, which affects the health of humans and the environment. In this practical study, the integrated system of a pulsation bubble column with an inverse fluidization air loop reactor was tested to remove phenol. The test platform was made and operated with a bubble column containing at its upper end an electrical solenoid valve engaged via at least two timers, and connected to the air loop reactor consisting of an outer rectangular tube and an internal draft tube by one-way valve, where the granular activated carbon is put as an adsorbent material in the annulus region between the inner and outer tube. The effects of various parameters [molar ratio of Phenol to H2O2 (1/10, 1/15 and 1/20), airflow rate (5-20 L/min), remediation time (5-60 min), initial phenol concentration (10- 150 mg L-1) have been studied. Removing 90% of the contaminated phenol as a result of this study may represent a partial solution to the ecological problem.
反流化气升循环反应器脉动泡塔脱酚研究
苯酚和酚类化合物是工业过程中排放到水体和废水系统中的无所不在的有机污染物,由于它们具有高毒性、致癌特性和积累能力等特殊特征,需要特别注意,这些特征会影响人类和环境的健康。在实际研究中,对脉动泡塔与反流化空气循环反应器的集成系统进行了除酚试验。所述测试平台由气泡柱制成并运行,气泡柱上端包含通过至少两个计时器连接的电动电磁阀,气泡柱通过单向阀连接到由外矩形管和内导流管组成的空气回路反应器,其中颗粒活性炭作为吸附剂放置在内外管之间的环空区域。考察了苯酚与H2O2的摩尔比(1/ 10,1 /15和1/20)、气流速率(5 ~ 20 L/min)、修复时间(5 ~ 60 min)、苯酚初始浓度(10 ~ 150 mg L-1)等参数对修复效果的影响。这项研究的结果是去除90%的污染苯酚,这可能代表了生态问题的部分解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Industry & Chemical Engineering Quarterly
Chemical Industry & Chemical Engineering Quarterly CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
2.10
自引率
0.00%
发文量
24
审稿时长
3.3 months
期刊介绍: The Journal invites contributions to the following two main areas: • Applied Chemistry dealing with the application of basic chemical sciences to industry • Chemical Engineering dealing with the chemical and biochemical conversion of raw materials into different products as well as the design and operation of plants and equipment. The Journal welcomes contributions focused on: Chemical and Biochemical Engineering [...] Process Systems Engineering[...] Environmental Chemical and Process Engineering[...] Materials Synthesis and Processing[...] Food and Bioproducts Processing[...] Process Technology[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信