Synthesis and Structural Properties of Eu3+:TiO2 Nanoparticles

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
B. A. Jabar, H. M. Yaseen, M. A. Hamzah, K. J. Tahir, N. Ridha, F. Alosfur, Rajaa A. Madlol, Basheer M. Hussein
{"title":"Synthesis and Structural Properties of Eu3+:TiO2 Nanoparticles","authors":"B. A. Jabar, H. M. Yaseen, M. A. Hamzah, K. J. Tahir, N. Ridha, F. Alosfur, Rajaa A. Madlol, Basheer M. Hussein","doi":"10.22052/JNS.2021.01.015","DOIUrl":null,"url":null,"abstract":"Pure and doped TiO2 with Eu3+ nanoparticles were prepared by a novel and simple preparation method. The pure TiO2 nanoparticles and the doping TiO2 with the Eu3+ ions prepared at room temperature by the sol-gel method via the reaction of Titanium (IV) isopropoxide (TTIP) with an aqueous solution of hydrochloric acidic in the presence of ethanol. The crystal structure of the prepared nanoparticles was investigated by X-Ray Diffraction (XRD) while the morphology of the samples was investigated by Field Emission Scanning Electron Microscopy (FESEM). All the prepared samples having excellent crystalline. As well, XRD proved that doping TiO2 with Eu3+ reduced the crystallite size. The FESEM images showed that the doping of TiO2 with Eu3+ results in larger particle sizes. In the present work, the effects of doping, particle size, and stabilization of the anatase phase were studied. As well as the deceleration of crystal growth by the rare-earth-doped into TiO2 host was investigated.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2021.01.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pure and doped TiO2 with Eu3+ nanoparticles were prepared by a novel and simple preparation method. The pure TiO2 nanoparticles and the doping TiO2 with the Eu3+ ions prepared at room temperature by the sol-gel method via the reaction of Titanium (IV) isopropoxide (TTIP) with an aqueous solution of hydrochloric acidic in the presence of ethanol. The crystal structure of the prepared nanoparticles was investigated by X-Ray Diffraction (XRD) while the morphology of the samples was investigated by Field Emission Scanning Electron Microscopy (FESEM). All the prepared samples having excellent crystalline. As well, XRD proved that doping TiO2 with Eu3+ reduced the crystallite size. The FESEM images showed that the doping of TiO2 with Eu3+ results in larger particle sizes. In the present work, the effects of doping, particle size, and stabilization of the anatase phase were studied. As well as the deceleration of crystal growth by the rare-earth-doped into TiO2 host was investigated.
Eu3+:TiO2纳米颗粒的合成及结构性能
采用一种新颖、简单的制备方法制备了Eu3+纳米颗粒的纯TiO2和掺杂TiO2。以异丙酸钛(TTIP)与乙醇存在的盐酸水溶液为原料,采用溶胶-凝胶法制备了纯TiO2纳米粒子和掺杂Eu3+离子的TiO2。采用x射线衍射(XRD)和场发射扫描电镜(FESEM)研究了制备的纳米颗粒的晶体结构。所制备的样品均具有优异的结晶性。XRD也证明了Eu3+掺杂TiO2可以减小晶粒尺寸。FESEM结果表明,Eu3+掺杂后TiO2颗粒尺寸增大。在本工作中,研究了掺杂、粒度和锐钛矿相稳定性的影响。同时研究了稀土掺杂TiO2载体对晶体生长的抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanostructures
Journal of Nanostructures NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信