Removal of azo dyes pollutants: Photo catalyst and magnetic investigation of iron oxide-zinc sulfide nanocomposites

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
Rosa Amini, G. Nabiyouni, Saghar Jarollahi
{"title":"Removal of azo dyes pollutants: Photo catalyst and magnetic investigation of iron oxide-zinc sulfide nanocomposites","authors":"Rosa Amini, G. Nabiyouni, Saghar Jarollahi","doi":"10.22052/JNS.2021.01.011","DOIUrl":null,"url":null,"abstract":"ZnS and iron oxide nanoparticles were first synthesized via precipitation and hydrothermal methods respectively. Fe3O4/ZnS nano-composites were then prepared using precipitation method. The prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. Vibrating sample magnetometer (VSM) was used to study the magnetic property of the products. The photo-catalytic behaviour of Fe3O4/ZnS nano-composites was evaluated using the degradation of three azo-dyes under ultraviolet light irradiation. The results illustrate super paramagnetic and ferromagnetic behaviour of Fe3O4 nanoparticles. The photo catalytic behaviour of Fe3O4/ZnS nano-composites was evaluated using the degradation of three various azo dyes under ultraviolet light irradiation. The results show that, the prepared nano-composites are applicable for magnetic and photo catalytic performance.ZnS and iron oxide nanoparticles were first synthesized via precipitation and hydrothermal methods respectively. Fe3O4/ZnS nano-composites were then prepared using precipitation method. The prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. Vibrating sample magnetometer (VSM) was used to study the magnetic property of the products. The photo-catalytic behaviour of Fe3O4/ZnS nano-composites was evaluated using the degradation of three azo-dyes under ultraviolet light irradiation. The results illustrate super paramagnetic and ferromagnetic behaviour of Fe3O4 nanoparticles. The photo catalytic behaviour of Fe3O4/ZnS nano-composites was evaluated using the degradation of three various azo dyes under ultraviolet light irradiation. The results show that, the prepared nano-composites are applicable for magnetic and photo catalytic performance.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"11 1","pages":"95-104"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2021.01.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

ZnS and iron oxide nanoparticles were first synthesized via precipitation and hydrothermal methods respectively. Fe3O4/ZnS nano-composites were then prepared using precipitation method. The prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. Vibrating sample magnetometer (VSM) was used to study the magnetic property of the products. The photo-catalytic behaviour of Fe3O4/ZnS nano-composites was evaluated using the degradation of three azo-dyes under ultraviolet light irradiation. The results illustrate super paramagnetic and ferromagnetic behaviour of Fe3O4 nanoparticles. The photo catalytic behaviour of Fe3O4/ZnS nano-composites was evaluated using the degradation of three various azo dyes under ultraviolet light irradiation. The results show that, the prepared nano-composites are applicable for magnetic and photo catalytic performance.ZnS and iron oxide nanoparticles were first synthesized via precipitation and hydrothermal methods respectively. Fe3O4/ZnS nano-composites were then prepared using precipitation method. The prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. Vibrating sample magnetometer (VSM) was used to study the magnetic property of the products. The photo-catalytic behaviour of Fe3O4/ZnS nano-composites was evaluated using the degradation of three azo-dyes under ultraviolet light irradiation. The results illustrate super paramagnetic and ferromagnetic behaviour of Fe3O4 nanoparticles. The photo catalytic behaviour of Fe3O4/ZnS nano-composites was evaluated using the degradation of three various azo dyes under ultraviolet light irradiation. The results show that, the prepared nano-composites are applicable for magnetic and photo catalytic performance.
偶氮染料污染物的去除:氧化铁-硫化锌纳米复合材料的光催化和磁性研究
采用沉淀法和水热法分别合成了纳米氧化铁和纳米氧化锌。采用沉淀法制备了Fe3O4/ZnS纳米复合材料。采用x射线衍射(XRD)、扫描电镜(SEM)和傅里叶变换红外光谱(FT-IR)对产物进行了表征。用振动样品磁强计(VSM)研究了产物的磁性能。利用紫外光对三种偶氮染料的降解,考察了Fe3O4/ZnS纳米复合材料的光催化性能。结果表明,Fe3O4纳米颗粒具有超顺磁性和铁磁性。利用紫外光对三种不同的偶氮染料进行降解,考察了Fe3O4/ZnS纳米复合材料的光催化性能。结果表明,所制备的纳米复合材料具有良好的磁性和光催化性能。采用沉淀法和水热法分别合成了纳米氧化铁和纳米氧化锌。采用沉淀法制备了Fe3O4/ZnS纳米复合材料。采用x射线衍射(XRD)、扫描电镜(SEM)和傅里叶变换红外光谱(FT-IR)对产物进行了表征。用振动样品磁强计(VSM)研究了产物的磁性能。利用紫外光对三种偶氮染料的降解,考察了Fe3O4/ZnS纳米复合材料的光催化性能。结果表明,Fe3O4纳米颗粒具有超顺磁性和铁磁性。利用紫外光对三种不同的偶氮染料进行降解,考察了Fe3O4/ZnS纳米复合材料的光催化性能。结果表明,所制备的纳米复合材料具有良好的磁性和光催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanostructures
Journal of Nanostructures NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信