Sonochemical Preparation of Magnesium Hydroxide and Aluminum Hydroxide Nanoparticles for Flame Retardancy and Thermal Stability of Cellulose Acetate and Wood
Mahya Tamiji, Ali Reza Ahmadian-Fard-Fini, Manouchehr Behzadi, D. Ghanbari
{"title":"Sonochemical Preparation of Magnesium Hydroxide and Aluminum Hydroxide Nanoparticles for Flame Retardancy and Thermal Stability of Cellulose Acetate and Wood","authors":"Mahya Tamiji, Ali Reza Ahmadian-Fard-Fini, Manouchehr Behzadi, D. Ghanbari","doi":"10.22052/JNS.2021.01.004","DOIUrl":null,"url":null,"abstract":"In this work firstly magnesium hydroxide (Mg(OH)2) and aluminum hydroxide (Al(OH)3) were prepared using sono-chemical reaction at solvent of water without applying any surface active agent. Effect of various sono-chemistry parameters such as power, cycles, time and volume on the size and shape of nanostructures were investigated. Secondly nanoparticles were modified and coated by ethyl cellulose capping agent. Modified nanoparticles were added to cellulose acetate and surface of wood for investigation of flame retardancy. Thermal stability were characterized by thermal gravimetric analysis (TGA). Flame retardancy were examined by UL-94 and heat release tests.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2021.01.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
In this work firstly magnesium hydroxide (Mg(OH)2) and aluminum hydroxide (Al(OH)3) were prepared using sono-chemical reaction at solvent of water without applying any surface active agent. Effect of various sono-chemistry parameters such as power, cycles, time and volume on the size and shape of nanostructures were investigated. Secondly nanoparticles were modified and coated by ethyl cellulose capping agent. Modified nanoparticles were added to cellulose acetate and surface of wood for investigation of flame retardancy. Thermal stability were characterized by thermal gravimetric analysis (TGA). Flame retardancy were examined by UL-94 and heat release tests.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.