Electroanalytical sensing of Asulam based on nanocomposite modified glassy carbon electrode

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
M. Roushani, F. Mohammadi, Akram Valipour
{"title":"Electroanalytical sensing of Asulam based on nanocomposite modified glassy carbon electrode","authors":"M. Roushani, F. Mohammadi, Akram Valipour","doi":"10.22052/JNS.2020.01.014","DOIUrl":null,"url":null,"abstract":"In this study a facile approach to employ Copper nanoparticle (CuNPs) and multi-walled carbon nanotubes (MWCNT) as the nanomaterial for selective detection of asulam have been investigated. This work reports the electrocatalytic oxidation of asulam on glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNT), ionic liquids (IL), chitosan (Chit) and copper nanoparticles (CuNPs).Using the proposed nanocomposite provides a specific platform with increased surface. The surface morphology of this modified electrode was characterized by field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectrometer (EDX) techniques. The electrochemical behaviors of the fabricated sensor were investigated by cyclic voltammetry (CV) and chronoamperometry modes. Under optimal conditions, the amperometric study exhibits two linear ranges of 1–11 and 11–200 μmol L-1 with a detection limit (LOD) of 0.33 nmol L-1 (at an S/N of 3) and sensitivity of 1.9 nA μmol L-1 for Asulam determination. This novel sensor was used to analyze the real sample. The sensor provides a convenient, low-cost and simple method for Asulam detection and proposes new horizons for quantitative detection of Asulam.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"12 1","pages":"128-139"},"PeriodicalIF":1.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.01.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

In this study a facile approach to employ Copper nanoparticle (CuNPs) and multi-walled carbon nanotubes (MWCNT) as the nanomaterial for selective detection of asulam have been investigated. This work reports the electrocatalytic oxidation of asulam on glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNT), ionic liquids (IL), chitosan (Chit) and copper nanoparticles (CuNPs).Using the proposed nanocomposite provides a specific platform with increased surface. The surface morphology of this modified electrode was characterized by field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectrometer (EDX) techniques. The electrochemical behaviors of the fabricated sensor were investigated by cyclic voltammetry (CV) and chronoamperometry modes. Under optimal conditions, the amperometric study exhibits two linear ranges of 1–11 and 11–200 μmol L-1 with a detection limit (LOD) of 0.33 nmol L-1 (at an S/N of 3) and sensitivity of 1.9 nA μmol L-1 for Asulam determination. This novel sensor was used to analyze the real sample. The sensor provides a convenient, low-cost and simple method for Asulam detection and proposes new horizons for quantitative detection of Asulam.
基于纳米复合修饰玻碳电极的Asulam电分析传感
本文研究了一种利用铜纳米粒子(cups)和多壁碳纳米管(MWCNT)作为纳米材料选择性检测阿苏兰的简便方法。本文报道了用多壁碳纳米管(MWCNT)、离子液体(IL)、壳聚糖(Chit)和铜纳米颗粒(CuNPs)修饰的玻碳电极(GCE)对磺胺的电催化氧化。使用所提出的纳米复合材料提供了一个具有增加表面的特定平台。利用场发射扫描电镜(FE-SEM)和能量色散x射线光谱仪(EDX)技术对改性电极的表面形貌进行了表征。采用循环伏安法和计时伏安法研究了该传感器的电化学行为。在最佳条件下,安培法在1 ~ 11 μmol L-1和11 ~ 200 μmol L-1的线性范围内,检测限为0.33 nmol L-1(信噪比为3),灵敏度为1.9 nA μmol L-1。该传感器被用于实际样品的分析。该传感器为Asulam的检测提供了一种方便、低成本、简单的方法,为Asulam的定量检测提出了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanostructures
Journal of Nanostructures NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信