{"title":"Role of adenosine triphosphate and protein kinase a in the force-frequency relationship in isolated rat cardiomyocytes","authors":"Nihal Ozturk, O. Erkan, S. Uslu, S. Ozdemir","doi":"10.2298/abs221213004o","DOIUrl":null,"url":null,"abstract":"The physiological heart rate of rodents is around 4-6 Hz, although a stimulus frequency of 1 Hz is generally used in isolated cardiomyocytes to study changes in the contraction-relaxation cycle in cardiac muscle physiology and pathophysiology. Our study investigated the contraction parameters in isolated cardiomyocytes at 1, 2 and 4 Hz stimulation, and the roles of ATP and protein kinase A (PKA) in the force-frequency relationship in isolated cardiomyocytes. The contraction of the cell and intracellular Ca2+ changes were recorded simultaneously during cell stimulation by applying pulses of 6-8 V amplitude with frequencies of 1, 2 and 4 Hz. The increase in stimulus frequency caused a significant decrease in the percentage of shortening, relaxation times, slowing of the relaxation rate, and a significant increase in diastolic Ca2+ levels, but had no effect on the contraction rate and Ca2+ transients. Administration of ATP and N6-benzoyladenosine-3?-5?-cyclic monophosphate (6-BNZcAMP) caused an increase in contraction amplitude and speed which were proportional to the stimulus frequency but had no effect on the relaxation times. The experimental results show that the forcestimulus frequency has a negative correlation in isolated myocytes and that energy metabolism and the ?-adrenergic system may be responsible for this relationship.","PeriodicalId":8145,"journal":{"name":"Archives of Biological Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2298/abs221213004o","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The physiological heart rate of rodents is around 4-6 Hz, although a stimulus frequency of 1 Hz is generally used in isolated cardiomyocytes to study changes in the contraction-relaxation cycle in cardiac muscle physiology and pathophysiology. Our study investigated the contraction parameters in isolated cardiomyocytes at 1, 2 and 4 Hz stimulation, and the roles of ATP and protein kinase A (PKA) in the force-frequency relationship in isolated cardiomyocytes. The contraction of the cell and intracellular Ca2+ changes were recorded simultaneously during cell stimulation by applying pulses of 6-8 V amplitude with frequencies of 1, 2 and 4 Hz. The increase in stimulus frequency caused a significant decrease in the percentage of shortening, relaxation times, slowing of the relaxation rate, and a significant increase in diastolic Ca2+ levels, but had no effect on the contraction rate and Ca2+ transients. Administration of ATP and N6-benzoyladenosine-3?-5?-cyclic monophosphate (6-BNZcAMP) caused an increase in contraction amplitude and speed which were proportional to the stimulus frequency but had no effect on the relaxation times. The experimental results show that the forcestimulus frequency has a negative correlation in isolated myocytes and that energy metabolism and the ?-adrenergic system may be responsible for this relationship.
期刊介绍:
The Archives of Biological Sciences is a multidisciplinary journal that covers original research in a wide range of subjects in life science, including biology, ecology, human biology and biomedical research.
The Archives of Biological Sciences features articles in genetics, botany and zoology (including higher and lower terrestrial and aquatic plants and animals, prokaryote biology, algology, mycology, entomology, etc.); biological systematics; evolution; biochemistry, molecular and cell biology, including all aspects of normal cell functioning, from embryonic to differentiated tissues and in different pathological states; physiology, including chronobiology, thermal biology, cryobiology; radiobiology; neurobiology; immunology, including human immunology; human biology, including the biological basis of specific human pathologies and disease management.