Bratislav Dejanović, Vesna Begović-Kuprešanin, I. Stevanović, I. Lavrnja, B. Šošić-Jurjević, M. Ninković, S. Trifunović
{"title":"Agmatine reduces chlorpromazine prooxidant effects in rat hippocampus and striatum","authors":"Bratislav Dejanović, Vesna Begović-Kuprešanin, I. Stevanović, I. Lavrnja, B. Šošić-Jurjević, M. Ninković, S. Trifunović","doi":"10.2298/abs210429028d","DOIUrl":null,"url":null,"abstract":"The use of the antidepressant drug chlorpromazine (CPZ) is linked to the occurrence of oxidative stress in some brain structures. Thus, overcoming the side effects of CPZ is of great importance. Because agmatine (AGM) can act as a free radical scavenger, it is an interesting compound as an adjunct to CPZ therapy. The aim of our study was to investigate the enzymatic parameters of oxidative stress in the hippocampus and striatum of rats after CPZ treatment, and the potential protective effects of AGM. Rats were injected as follows with (i) 1 mL/kg b.w. saline; (ii) a single intraperitoneal (i.p.) dose of CPZ (38.7 mg/kg); (iii) CPZ (38.7 mg/kg) and AGM (75 mg/kg); (iv) AGM (75 mg/kg). CPZ induced an increase in superoxide anion radical (O2 ?-) concentration, while the activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR), were lowered in both the hippocampus and striatum. Cotreatment with CPZ and AGM protected the examined brain structures by reversing the antioxidant enzyme activities to the control values. Following CPZ treatment, the effects were more pronounced for SOD and GPx in the hippocampus, and for SOD, CAT and GPx in the striatum. The full effect of restored superoxide production was achieved in the striatum, which points to the role of CAT. The obtained results suggest that CPZ in combination with AGM may be considered as a new treatment strategy.","PeriodicalId":8145,"journal":{"name":"Archives of Biological Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2298/abs210429028d","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of the antidepressant drug chlorpromazine (CPZ) is linked to the occurrence of oxidative stress in some brain structures. Thus, overcoming the side effects of CPZ is of great importance. Because agmatine (AGM) can act as a free radical scavenger, it is an interesting compound as an adjunct to CPZ therapy. The aim of our study was to investigate the enzymatic parameters of oxidative stress in the hippocampus and striatum of rats after CPZ treatment, and the potential protective effects of AGM. Rats were injected as follows with (i) 1 mL/kg b.w. saline; (ii) a single intraperitoneal (i.p.) dose of CPZ (38.7 mg/kg); (iii) CPZ (38.7 mg/kg) and AGM (75 mg/kg); (iv) AGM (75 mg/kg). CPZ induced an increase in superoxide anion radical (O2 ?-) concentration, while the activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR), were lowered in both the hippocampus and striatum. Cotreatment with CPZ and AGM protected the examined brain structures by reversing the antioxidant enzyme activities to the control values. Following CPZ treatment, the effects were more pronounced for SOD and GPx in the hippocampus, and for SOD, CAT and GPx in the striatum. The full effect of restored superoxide production was achieved in the striatum, which points to the role of CAT. The obtained results suggest that CPZ in combination with AGM may be considered as a new treatment strategy.
期刊介绍:
The Archives of Biological Sciences is a multidisciplinary journal that covers original research in a wide range of subjects in life science, including biology, ecology, human biology and biomedical research.
The Archives of Biological Sciences features articles in genetics, botany and zoology (including higher and lower terrestrial and aquatic plants and animals, prokaryote biology, algology, mycology, entomology, etc.); biological systematics; evolution; biochemistry, molecular and cell biology, including all aspects of normal cell functioning, from embryonic to differentiated tissues and in different pathological states; physiology, including chronobiology, thermal biology, cryobiology; radiobiology; neurobiology; immunology, including human immunology; human biology, including the biological basis of specific human pathologies and disease management.