Bio-inspired Computing Paradigm for Periodic Noise Reduction in Digital Images

N. Alibabaie, A. Latif
{"title":"Bio-inspired Computing Paradigm for Periodic Noise Reduction in Digital Images","authors":"N. Alibabaie, A. Latif","doi":"10.22044/JADM.2020.9358.2071","DOIUrl":null,"url":null,"abstract":"Periodic noise reduction is a fundamental problem in image processing, which severely affects the visual quality and subsequent application of the data. Most of the conventional approaches are only dedicated to either the frequency or spatial domain. In this research, we propose a dual-domain approach by converting the periodic noise reduction task into an image decomposition problem. We introduced a bio-inspired computational model to separate the original image from the noise pattern without having any a priori knowledge about its structure or statistics. Experiments on both synthetic and non-synthetic noisy images have been carried out to validate the effectiveness and efficiency of the proposed algorithm. The simulation results demonstrate the effectiveness of the proposed method both qualitatively and quantitatively.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2020.9358.2071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Periodic noise reduction is a fundamental problem in image processing, which severely affects the visual quality and subsequent application of the data. Most of the conventional approaches are only dedicated to either the frequency or spatial domain. In this research, we propose a dual-domain approach by converting the periodic noise reduction task into an image decomposition problem. We introduced a bio-inspired computational model to separate the original image from the noise pattern without having any a priori knowledge about its structure or statistics. Experiments on both synthetic and non-synthetic noisy images have been carried out to validate the effectiveness and efficiency of the proposed algorithm. The simulation results demonstrate the effectiveness of the proposed method both qualitatively and quantitatively.
数字图像周期性降噪的生物启发计算范式
周期性降噪是图像处理中的一个基本问题,严重影响图像的视觉质量和后续应用。大多数传统的方法只专注于频率域或空间域。在本研究中,我们提出了一种双域方法,将周期性降噪任务转化为图像分解问题。我们引入了一个生物启发的计算模型,在没有任何关于其结构或统计的先验知识的情况下,将原始图像从噪声模式中分离出来。在合成和非合成噪声图像上进行了实验,验证了该算法的有效性和高效性。仿真结果从定性和定量两方面验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信