Camera Arrangement in Visual 3D Systems using Iso-disparity Model to Enhance Depth Estimation Accuracy

M. Karami, A. M. Nia, M. Ehsanian
{"title":"Camera Arrangement in Visual 3D Systems using Iso-disparity Model to Enhance Depth Estimation Accuracy","authors":"M. Karami, A. M. Nia, M. Ehsanian","doi":"10.22044/JADM.2019.7209.1855","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of automatic arrangement of cameras in a 3D system to enhance the performance of depth acquisition procedure. Lacking ground truth or a priori information, a measure of uncertainty is required to assess the quality of reconstruction. The mathematical model of iso-disparity surfaces provides an efficient way to estimate the depth estimation uncertainty which is believed to be related to the baseline length, focal length, panning angle and the pixel resolution in a stereo vision system. Accordingly, we first present analytical relations for fast estimation of the embedded uncertainty in depth acquisition and then these relations, along with the 3D sampling arrangement are employed to define a cost function. The optimal camera arrangement will be determined by minimizing the cost function with respect to the system parameters and the required constraints. Finally, the proposed algorithm is implemented on some 3D models. The simulation results demonstrate significant improvement (up to 35%) in depth uncertainty in the achieved depth maps compared with the traditional rectified camera setup.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JADM.2019.7209.1855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we address the problem of automatic arrangement of cameras in a 3D system to enhance the performance of depth acquisition procedure. Lacking ground truth or a priori information, a measure of uncertainty is required to assess the quality of reconstruction. The mathematical model of iso-disparity surfaces provides an efficient way to estimate the depth estimation uncertainty which is believed to be related to the baseline length, focal length, panning angle and the pixel resolution in a stereo vision system. Accordingly, we first present analytical relations for fast estimation of the embedded uncertainty in depth acquisition and then these relations, along with the 3D sampling arrangement are employed to define a cost function. The optimal camera arrangement will be determined by minimizing the cost function with respect to the system parameters and the required constraints. Finally, the proposed algorithm is implemented on some 3D models. The simulation results demonstrate significant improvement (up to 35%) in depth uncertainty in the achieved depth maps compared with the traditional rectified camera setup.
利用等视差模型在视觉三维系统中布置摄像机以提高深度估计精度
本文研究了三维系统中相机的自动排列问题,以提高深度采集程序的性能。由于缺乏基本事实或先验信息,评估重建质量需要一定程度的不确定性。等视差曲面的数学模型为立体视觉系统中与基线长度、焦距、平移角度和像素分辨率有关的深度估计不确定性提供了一种有效的估计方法。因此,我们首先提出了快速估计深度采集中嵌入不确定性的分析关系,然后利用这些关系以及三维采样安排来定义成本函数。相机的最佳配置将通过最小化与系统参数和所需约束相关的成本函数来确定。最后,在一些三维模型上实现了该算法。仿真结果表明,与传统的整流相机设置相比,所获得的深度图的深度不确定性有显著改善(高达35%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信