Uma Comparação Sistemática de Diferentes Abordagens para a Sumarização Automática Extrativa de Textos em Português

IF 0.3 Q4 LINGUISTICS
Linguamatica Pub Date : 2015-07-31 DOI:10.21814/LM.7.1.203
M. Costa, Bruno Martins
{"title":"Uma Comparação Sistemática de Diferentes Abordagens para a Sumarização Automática Extrativa de Textos em Português","authors":"M. Costa, Bruno Martins","doi":"10.21814/LM.7.1.203","DOIUrl":null,"url":null,"abstract":"Automatic document summarization is the task of automatically generating condensed versions of source texts, presenting itself as one of the fundamental problems in the areas of Information Retrieval and Natural Language Processing. In this paper, different extractive approaches are compared in the task of summarizing individual documents corresponding to journalistic texts written in Portuguese. Through the use of the ROUGE package for measuring the quality of the produced summaries, we report on results for two different experimental domains, involving (i) the generation of headlines for news articles written in European Portuguese, and (ii) the generation of summaries for news articles written in Brazilian Portuguese. The results demonstrate that methods based on the selection of the first sentences have the best results  when building extractive news headlines in terms of several ROUGE metrics. Regarding the generation of summaries with more than one sentence, the method that achieved the best results was the LSA Squared algorithm, for the various ROUGE metrics.","PeriodicalId":41819,"journal":{"name":"Linguamatica","volume":"7 1","pages":"23-40"},"PeriodicalIF":0.3000,"publicationDate":"2015-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linguamatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21814/LM.7.1.203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 3

Abstract

Automatic document summarization is the task of automatically generating condensed versions of source texts, presenting itself as one of the fundamental problems in the areas of Information Retrieval and Natural Language Processing. In this paper, different extractive approaches are compared in the task of summarizing individual documents corresponding to journalistic texts written in Portuguese. Through the use of the ROUGE package for measuring the quality of the produced summaries, we report on results for two different experimental domains, involving (i) the generation of headlines for news articles written in European Portuguese, and (ii) the generation of summaries for news articles written in Brazilian Portuguese. The results demonstrate that methods based on the selection of the first sentences have the best results  when building extractive news headlines in terms of several ROUGE metrics. Regarding the generation of summaries with more than one sentence, the method that achieved the best results was the LSA Squared algorithm, for the various ROUGE metrics.
葡萄牙语文本自动提取摘要不同方法的系统比较
自动文档摘要是自动生成源文本的压缩版本的任务,是信息检索和自然语言处理领域的基本问题之一。在本文中,不同的提取方法在总结与葡萄牙语新闻文本对应的单个文件的任务中进行了比较。通过使用ROUGE软件包来衡量生成摘要的质量,我们报告了两个不同实验领域的结果,包括(i)用欧洲葡萄牙语撰写的新闻文章的标题生成,以及(ii)用巴西葡萄牙语撰写的新闻文章的摘要生成。结果表明,基于首句选择的方法在构建提取新闻标题时,在几个ROUGE指标方面具有最佳效果。对于多句摘要的生成,对于各种ROUGE指标,取得最佳效果的方法是LSA Squared算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Linguamatica
Linguamatica LINGUISTICS-
CiteScore
1.40
自引率
0.00%
发文量
4
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信