Asymptotic expansions for the Wallis sequence and some new mathematical constants associated with the Glaisher-Kinkelin and Choi-Srivastava constants

IF 1 4区 数学 Q1 MATHEMATICS
Xue Han, Chao-Ping Chen, H. Srivastava
{"title":"Asymptotic expansions for the Wallis sequence and some new mathematical constants associated with the Glaisher-Kinkelin and Choi-Srivastava constants","authors":"Xue Han, Chao-Ping Chen, H. Srivastava","doi":"10.2298/aadm220414024h","DOIUrl":null,"url":null,"abstract":"The celebrated Wallis sequence Wn, which is defined by Wn := ?nk=1 4k2/4k2?1, is known to have the limit ? 2 as n ? ?. Without using the Bernoulli numbers Bn, the authors present several asymptotic expansions and a recurrence relation for determining the coefficients of each asymptotic expansion related to the Wallis sequence Wn and the newly-introduced constants D and E, which are analogous to the Glaisher-Kinkelin constant A and the Choi-Srivastava constants B and C.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm220414024h","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The celebrated Wallis sequence Wn, which is defined by Wn := ?nk=1 4k2/4k2?1, is known to have the limit ? 2 as n ? ?. Without using the Bernoulli numbers Bn, the authors present several asymptotic expansions and a recurrence relation for determining the coefficients of each asymptotic expansion related to the Wallis sequence Wn and the newly-introduced constants D and E, which are analogous to the Glaisher-Kinkelin constant A and the Choi-Srivastava constants B and C.
Wallis序列的渐近展开式及与Glaisher-Kinkelin和Choi-Srivastava常数相关的一些新的数学常数
著名的沃利斯序列Wn,定义为Wn:= ?nk=1 4k2/4k2?1、已知有极限吗?2等于n ??。在不使用Bernoulli数Bn的情况下,作者给出了几个渐近展开式和确定每个渐近展开式的系数的递推关系,这些系数与Wallis序列Wn和新引入的常数D和E有关,它们类似于glaiser - kinkelin常数a和Choi-Srivastava常数B和C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信