The extended Eulerian numbers over function fields

IF 1 4区 数学 Q1 MATHEMATICS
A. Bayad, Mounir Hajli
{"title":"The extended Eulerian numbers over function fields","authors":"A. Bayad, Mounir Hajli","doi":"10.2298/aadm210930019b","DOIUrl":null,"url":null,"abstract":"In this article, we introduce the extended Eulerian numbers for a large class of zeta functions, which includes the zeta functions associated to function fields, and to schemes over finite fields. This construction generalizes the extended Eulerian numbers defined by Carlitz. We give an asymptotic expansion for the summatory function associated to these numbers. Our main result generalizes the well known result on the asymptotic behavior of the extended Eulerian numbers associated to the Riemann zeta function.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm210930019b","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce the extended Eulerian numbers for a large class of zeta functions, which includes the zeta functions associated to function fields, and to schemes over finite fields. This construction generalizes the extended Eulerian numbers defined by Carlitz. We give an asymptotic expansion for the summatory function associated to these numbers. Our main result generalizes the well known result on the asymptotic behavior of the extended Eulerian numbers associated to the Riemann zeta function.
函数域上的扩展欧拉数
在本文中,我们介绍了一大类zeta函数的扩展欧拉数,其中包括与函数场相关的zeta函数,以及有限域上的格式。这种构造推广了Carlitz所定义的扩展欧拉数。我们给出了与这些数相关的求和函数的渐近展开式。我们的主要结果推广了与黎曼ζ函数有关的扩展欧拉数的渐近性的众所周知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信