Complete monotonicity involving the divided difference of polygamma functions

IF 1 4区 数学 Q1 MATHEMATICS
Zhen-Hang Yang, Jingfeng Tian
{"title":"Complete monotonicity involving the divided difference of polygamma functions","authors":"Zhen-Hang Yang, Jingfeng Tian","doi":"10.2298/aadm210630007y","DOIUrl":null,"url":null,"abstract":"For r, s ? R and ? = min {r, s}, let D[x + r, x + s; ?n?1] ? ??n (x) be the divided difference of the functions ?n?1 = (?1)n ?(n?1) (n ? N) on (??,?), where ?(n) stands for the polygamma functions. In this paper, we present the necessary and sufficient conditions for the functions x ? ?k i=1 ?mi (x) ? ?k ?k i=1 ?ni (x) , x ? ?k i=1 ?ni (x) ? ?k?snk (x) to be completely monotonic on (??,?), where mi, ni ? N for i = 1,..., k with k ? 2 and snk = ?k i=1 ni. These generalize known results and gives an answer to a problem.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm210630007y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

For r, s ? R and ? = min {r, s}, let D[x + r, x + s; ?n?1] ? ??n (x) be the divided difference of the functions ?n?1 = (?1)n ?(n?1) (n ? N) on (??,?), where ?(n) stands for the polygamma functions. In this paper, we present the necessary and sufficient conditions for the functions x ? ?k i=1 ?mi (x) ? ?k ?k i=1 ?ni (x) , x ? ?k i=1 ?ni (x) ? ?k?snk (x) to be completely monotonic on (??,?), where mi, ni ? N for i = 1,..., k with k ? 2 and snk = ?k i=1 ni. These generalize known results and gives an answer to a problem.
涉及多函数的除差的完全单调性
对于r s ?R和?= min {r, s},让D[x + r, x + s;n ?1) ???N (x)是两个函数的除差? N ?1 = (?1)n ?(n?1) (n?N) on(??,?),其中?(N)表示多元函数。本文给出了函数x ?k i=1 ?mi (x) ?k k i=1 ni (x) x ?k i=1 ni (x) ?k ?SNK (x)在(??,?)上是完全单调的,其中mi, ni ?N对于i = 1,…k和k ?2和SNK = ?k i=1 ni。这些方法概括了已知的结果,并给出了问题的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信