The total torsion of knots under second order infinitesimal bending

IF 1 4区 数学 Q1 MATHEMATICS
Marija S. Najdanovic, L. Velimirović, Svetozar R. Rancic
{"title":"The total torsion of knots under second order infinitesimal bending","authors":"Marija S. Najdanovic, L. Velimirović, Svetozar R. Rancic","doi":"10.2298/aadm200206035n","DOIUrl":null,"url":null,"abstract":"In this paper we consider infinitesimal bending of the second order of curves and knots. The total torsion of the knot during the second order infinitesimal bending is discussed and expressions for the first and the second variation of the total torsion are given. Some examples aimed to illustrate infinitesimal bending of knots are shown using figures. Colors are used to illustrate torsion values at different points of bent knots and the total torsion is numerically calculated.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm200206035n","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we consider infinitesimal bending of the second order of curves and knots. The total torsion of the knot during the second order infinitesimal bending is discussed and expressions for the first and the second variation of the total torsion are given. Some examples aimed to illustrate infinitesimal bending of knots are shown using figures. Colors are used to illustrate torsion values at different points of bent knots and the total torsion is numerically calculated.
二阶无穷小弯曲下结点的总扭转
本文研究了二阶曲线和结点的无穷小弯曲问题。讨论了二阶无穷小弯曲时的总扭转,给出了总扭转的一阶和二阶变化的表达式。一些例子旨在说明无穷小的弯曲节用图形。用颜色表示弯曲结点不同点处的扭转值,并用数值方法计算总扭转值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信