A note on sharpening of a theorem of Ankeny and Rivlin

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Aseem Dalal, K. Govil
{"title":"A note on sharpening of a theorem of Ankeny and Rivlin","authors":"Aseem Dalal, K. Govil","doi":"10.2298/AADM200206012D","DOIUrl":null,"url":null,"abstract":"Let p(z) = ?n?=0 a?z? be a polynomial of degree n, M(p,R) := max|z|=R?0 |p(z)|, and M(p,1) := ||p||. Then according to a well-known result of Ankeny and Rivlin, we have for R ? 1, M(p,R) ? (Rn+1/2) ||p||. This inequality has been sharpened among others by Govil, who proved that for R ? 1, M(p,R) ? (Rn+1/2) ||p||-n/2 (||p||2-4|an|2/||p||) {(R-1)||p||/||p||+2|an|- ln (1+ (R-1)||p||/||p||+2|an|)}. In this paper, we sharpen the above inequality of Govil, which in turn sharpens inequality of Ankeny and Rivlin. We present our result in terms of the LerchPhi function ?(z,s,a), implemented in Wolfram's MATHEMATICA as LerchPhi [z,s,a], which can be evaluated to arbitrary numerical precision, and is suitable for both symbolic and numerical manipulations. Also, we present an example and by using MATLAB show that for some polynomials the improvement in bound can be considerably significant.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/AADM200206012D","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Let p(z) = ?n?=0 a?z? be a polynomial of degree n, M(p,R) := max|z|=R?0 |p(z)|, and M(p,1) := ||p||. Then according to a well-known result of Ankeny and Rivlin, we have for R ? 1, M(p,R) ? (Rn+1/2) ||p||. This inequality has been sharpened among others by Govil, who proved that for R ? 1, M(p,R) ? (Rn+1/2) ||p||-n/2 (||p||2-4|an|2/||p||) {(R-1)||p||/||p||+2|an|- ln (1+ (R-1)||p||/||p||+2|an|)}. In this paper, we sharpen the above inequality of Govil, which in turn sharpens inequality of Ankeny and Rivlin. We present our result in terms of the LerchPhi function ?(z,s,a), implemented in Wolfram's MATHEMATICA as LerchPhi [z,s,a], which can be evaluated to arbitrary numerical precision, and is suitable for both symbolic and numerical manipulations. Also, we present an example and by using MATLAB show that for some polynomials the improvement in bound can be considerably significant.
关于Ankeny和Rivlin定理锐化的注解
令p(z) = ?n?= 0 z ?是n次多项式,M(p,R) = max|z|=R?0 |p(z)|, and M(p,1):= ||p||。然后根据Ankeny和Rivlin的一个著名的结果,我们有R ?1 M(p,R) ?p (Rn + 1/2) | | | |。这种不平等被Govil强化了,他证明了R ?1 M(p,R) ?p (Rn + 1/2) | | | | - n / 2 (| | p | | 2 - 4 | | 2 / | | p | |) {(r1) | | p | |和| | p | | + 2 | | - ln (1 + (r1) | | p | |和| | p | | + 2 | |)}。在本文中,我们锐化了Govil的上述不等式,这反过来锐化了Ankeny和Rivlin的不等式。我们用LerchPhi函数?(z,s,a)来表示我们的结果,该函数在Wolfram的MATHEMATICA中实现为LerchPhi [z,s,a],它可以计算为任意数值精度,并且适用于符号和数值操作。此外,我们还给出了一个例子,并通过MATLAB证明了对某些多项式的界的改进是相当显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信