Oscillation criteria of third-order nonlinear neutral delay difference equations with noncanonical operators

IF 1 4区 数学 Q1 MATHEMATICS
G. Ayyappan, G. Chatzarakis, T. Gopal, E. Thandapani
{"title":"Oscillation criteria of third-order nonlinear neutral delay difference equations with noncanonical operators","authors":"G. Ayyappan, G. Chatzarakis, T. Gopal, E. Thandapani","doi":"10.2298/AADM200913011A","DOIUrl":null,"url":null,"abstract":"In this paper, we present some new oscillation criteria for nonlinear neutral difference equations of the form ?(b(n)?(a(n)?z(n))) + q(n)x?(?(n)) = 0 where z(n) = x(n) + p(n)x(?(n)),? > 0, b(n) > 0, a(n) > 0, q(n) ? 0 and p(n) > 1. By summation averaging technique, we establish new criteria for the oscillation of all solutions of the studied difference equation above. We present four examples to show the strength of the new obtained results.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/AADM200913011A","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present some new oscillation criteria for nonlinear neutral difference equations of the form ?(b(n)?(a(n)?z(n))) + q(n)x?(?(n)) = 0 where z(n) = x(n) + p(n)x(?(n)),? > 0, b(n) > 0, a(n) > 0, q(n) ? 0 and p(n) > 1. By summation averaging technique, we establish new criteria for the oscillation of all solutions of the studied difference equation above. We present four examples to show the strength of the new obtained results.
具有非正则算子的三阶非线性中立型时滞差分方程的振动判据
本文给出了形式为?(b(n)?(a(n)?z(n))) + q(n)x?(?(n)) = 0的非线性中立型差分方程的一些新的振动准则,其中z(n) = x(n) + p(n)x(?(n)),?>0 b(n) > 0 a(n) > 0 q(n) ?0和p(n) > 1。利用求和平均技术,建立了上述差分方程所有解的振动性的新判据。我们给出了四个例子来说明新得到的结果的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信