Differential transcendence of solutions of systems of linear differential equations based on total reduction of the system

IF 1 4区 数学 Q1 MATHEMATICS
I. Jovović
{"title":"Differential transcendence of solutions of systems of linear differential equations based on total reduction of the system","authors":"I. Jovović","doi":"10.2298/aadm190627024j","DOIUrl":null,"url":null,"abstract":"In this paper we consider total reduction of the nonhomogeneous linear system of operator equations with constant coefficients and commuting operators. The totally reduced system obtained in this manner is completely decoupled. All equations of the system differ only in the variables and in the nonhomogeneous terms. The homogeneous parts are obtained using the generalized characteristic polynomial of the system matrix. We also indicate how this technique may be used to examine differential transcendence of the solution of the linear system of the differential equations with constant coefficients over the complex field and meromorphic free terms.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm190627024j","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we consider total reduction of the nonhomogeneous linear system of operator equations with constant coefficients and commuting operators. The totally reduced system obtained in this manner is completely decoupled. All equations of the system differ only in the variables and in the nonhomogeneous terms. The homogeneous parts are obtained using the generalized characteristic polynomial of the system matrix. We also indicate how this technique may be used to examine differential transcendence of the solution of the linear system of the differential equations with constant coefficients over the complex field and meromorphic free terms.
基于全约化的线性微分方程组解的微分超越
本文研究了非齐次常系数算子方程组和交换算子的全约化问题。用这种方法得到的全约简系统是完全解耦的。系统的所有方程的不同之处在于变量和非齐次项。利用系统矩阵的广义特征多项式得到系统的齐次部分。我们还指出了如何使用这种技术来检验复域和亚纯自由项上常系数微分方程线性方程组解的微分超越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信