A new family of combinatorial numbers and polynomials associated with peters numbers and polynomials

IF 1 4区 数学 Q1 MATHEMATICS
Y. Simsek
{"title":"A new family of combinatorial numbers and polynomials associated with peters numbers and polynomials","authors":"Y. Simsek","doi":"10.2298/aadm190220042s","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to define new families of combinatorial numbers and polynomials associated with Peters polynomials. These families are also a modification of the special numbers and polynomials in [11]. Some fundamental properties of these polynomials and numbers are given. Moreover, a combinatorial identity, which calculates the Fibonacci numbers with the aid of binomial coefficients and which was proved by Lucas in 1876, is proved by different method with the help of these combinatorial numbers. Consequently, by using the same method, we give a new recurrence formula for the Fibonacci numbers and Lucas numbers. Finally, relations between these combinatorial numbers and polynomials with their generating functions and other well-known special polynomials and numbers are given.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm190220042s","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

The aim of this paper is to define new families of combinatorial numbers and polynomials associated with Peters polynomials. These families are also a modification of the special numbers and polynomials in [11]. Some fundamental properties of these polynomials and numbers are given. Moreover, a combinatorial identity, which calculates the Fibonacci numbers with the aid of binomial coefficients and which was proved by Lucas in 1876, is proved by different method with the help of these combinatorial numbers. Consequently, by using the same method, we give a new recurrence formula for the Fibonacci numbers and Lucas numbers. Finally, relations between these combinatorial numbers and polynomials with their generating functions and other well-known special polynomials and numbers are given.
与彼得斯数和多项式相关的一组新的组合数和多项式
本文的目的是定义与彼得斯多项式相关的新的组合数和多项式族。这些族也是[11]中特殊数和多项式的修正。给出了这些多项式和数的一些基本性质。此外,利用二项式系数计算斐波那契数的组合恒等式(由Lucas于1876年证明),用不同的方法证明了它。因此,用同样的方法,我们给出了一个新的Fibonacci数和Lucas数的递归式。最后,给出了这些组合数与多项式及其生成函数之间的关系,以及其他已知的特殊多项式与数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信