Bayesian Inference for Stochastic Copula Models

Taehyung Kim, Jeong-gun Park
{"title":"Bayesian Inference for Stochastic Copula Models","authors":"Taehyung Kim, Jeong-gun Park","doi":"10.22812/JETEM.2018.29.2.003","DOIUrl":null,"url":null,"abstract":"We proposes a new Bayesian MCMC algorithm for dynamic stochastic copula models with dependence parameters as unobserved state variables and presents the performance of the proposed MCMC algorithm through simulations. Our MCMC algorithm draws the state variables with an acceptancerejection Metropolis-Hastings algorithm using the candidate generating probability density function obtained by approximating the probability density function of the observed variables to the normal distribution of the dependence parameter.As an empirical example,weanalyzedthe stochasticcopulamodels for the KOSPI index and the HSCE index (Hang Seng China enterprise index) returnsfromJanuary3,2003toDecember30,2014usingtheproposedalgorithm. The Bayesian inference and model comparison results of the stochastic copula models of Gaussian copula, Student t-copula, Clayton copula, Frank copula, rotated Gumbel copula, and Plackett copula showed that Student t-copula model couldbeselectedasthebestmodel.Thesemodelcomparisonsresultsimplythat even though Gaussian stochastic copula model can capture ��near asymptotic dependence��, there may exist extreme tail dependence that can not be captured by the Gaussian stochastic copula model.","PeriodicalId":39995,"journal":{"name":"Journal of Economic Theory and Econometrics","volume":"29 1","pages":"48-120"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Theory and Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22812/JETEM.2018.29.2.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We proposes a new Bayesian MCMC algorithm for dynamic stochastic copula models with dependence parameters as unobserved state variables and presents the performance of the proposed MCMC algorithm through simulations. Our MCMC algorithm draws the state variables with an acceptancerejection Metropolis-Hastings algorithm using the candidate generating probability density function obtained by approximating the probability density function of the observed variables to the normal distribution of the dependence parameter.As an empirical example,weanalyzedthe stochasticcopulamodels for the KOSPI index and the HSCE index (Hang Seng China enterprise index) returnsfromJanuary3,2003toDecember30,2014usingtheproposedalgorithm. The Bayesian inference and model comparison results of the stochastic copula models of Gaussian copula, Student t-copula, Clayton copula, Frank copula, rotated Gumbel copula, and Plackett copula showed that Student t-copula model couldbeselectedasthebestmodel.Thesemodelcomparisonsresultsimplythat even though Gaussian stochastic copula model can capture ��near asymptotic dependence��, there may exist extreme tail dependence that can not be captured by the Gaussian stochastic copula model.
随机Copula模型的贝叶斯推理
针对以依赖参数为不可观测状态变量的动态随机copula模型,提出了一种新的贝叶斯MCMC算法,并通过仿真验证了该算法的性能。我们的MCMC算法通过将观测变量的概率密度函数近似于相关参数的正态分布而得到候选生成概率密度函数,并采用接受-排斥Metropolis-Hastings算法绘制状态变量。作为实证例子,我们利用本文提出的算法对2003年1月3日至2014年12月30日的韩国综合股价指数和恒生中国企业指数收益的随机耦合模型进行了分析。对Gaussian copula、Student t-copula、Clayton copula、Frank copula、旋转Gumbel copula和Plackett copula等随机copula模型的贝叶斯推理和模型比较结果表明,Student t-copula模型可以被选为最佳模型。这些模型的比较结果简单地表明,尽管高斯随机联结模型可以捕获“近渐近依赖”,但可能存在高斯随机联结模型无法捕获的极端尾依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Economic Theory and Econometrics
Journal of Economic Theory and Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
0.40
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信