Silicified layers within the Paleogene volcaniclastic Brian Head Formation, southern Utah: Insights into the origin of silicified beds in nonmarine strata
{"title":"Silicified layers within the Paleogene volcaniclastic Brian Head Formation, southern Utah: Insights into the origin of silicified beds in nonmarine strata","authors":"T. Schinkel, M. Wizevich","doi":"10.2113/GSROCKY.48.2.125","DOIUrl":null,"url":null,"abstract":"The Brian Head Formation represents the first widespread volcanism in the Tertiary of southwestern Utah. In the Casto Canyon area, about 20 km north of Bryce Canyon National Park, silicified beds are found within the upper part of the formation, an ∼200-m-thick sequence of volcaniclastic sandstone, bentonitic mudstone, and thin discontinuous micrite limestone beds. The sequence is primarily of fluvial origin, and the limestones were deposited in associated freshwater wetland environments. Silicified layers are typically associated with the limestone beds. Three types of silicified beds were recognized: thin (mm–cm scale), thick (up to 1.3 m thick), and silicified root mats. Petrographic analyses revealed a paragenetic sequence that consists of: (1) microcrystalline calcite (micrite); (2) spar calcite, locally replacing micrite; (3) non-fibrous microcrystalline quartz, including widespread replacement of spar and micrite; and (4) chalcedony. Stable isotopic ratios of carbon (δ 13 C from 0 to −2 per mille [‰]) and oxygen (δ 18 O from 25 to 33‰) in the calcite indicate precipitation in meteoric water. Calcite precipitation likely occurred in a palustrine setting shortly after burial, possibly in a semiarid climate. Isotope ratios of oxygen (δ 18 O from 12.7 to 29.3‰) in the microcrystalline quartz are compatible with precipitation by 80–150°C microcrystalline quartz-bearing fluids. Because the petrographic data indicate that the microcrystalline quartz mineralization post-dates the calcite, it follows that elevated-temperature fluids were also of groundwater origin. Subsurface elevated-temperature fluids, possibly associated with volcanism of the Marysvale volcanic complex, dissolved microcrystalline quartz from abundant glass shards in the volcaniclastic unit. Subsequent cooling of fluids caused dissolution of spar and micrite within limestone beds and the precipitation of microcrystalline quartz, thus forming the silicified layers of the Brian Head Formation.","PeriodicalId":34958,"journal":{"name":"Rocky Mountain Geology","volume":"48 1","pages":"125-141"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2113/GSROCKY.48.2.125","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rocky Mountain Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/GSROCKY.48.2.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The Brian Head Formation represents the first widespread volcanism in the Tertiary of southwestern Utah. In the Casto Canyon area, about 20 km north of Bryce Canyon National Park, silicified beds are found within the upper part of the formation, an ∼200-m-thick sequence of volcaniclastic sandstone, bentonitic mudstone, and thin discontinuous micrite limestone beds. The sequence is primarily of fluvial origin, and the limestones were deposited in associated freshwater wetland environments. Silicified layers are typically associated with the limestone beds. Three types of silicified beds were recognized: thin (mm–cm scale), thick (up to 1.3 m thick), and silicified root mats. Petrographic analyses revealed a paragenetic sequence that consists of: (1) microcrystalline calcite (micrite); (2) spar calcite, locally replacing micrite; (3) non-fibrous microcrystalline quartz, including widespread replacement of spar and micrite; and (4) chalcedony. Stable isotopic ratios of carbon (δ 13 C from 0 to −2 per mille [‰]) and oxygen (δ 18 O from 25 to 33‰) in the calcite indicate precipitation in meteoric water. Calcite precipitation likely occurred in a palustrine setting shortly after burial, possibly in a semiarid climate. Isotope ratios of oxygen (δ 18 O from 12.7 to 29.3‰) in the microcrystalline quartz are compatible with precipitation by 80–150°C microcrystalline quartz-bearing fluids. Because the petrographic data indicate that the microcrystalline quartz mineralization post-dates the calcite, it follows that elevated-temperature fluids were also of groundwater origin. Subsurface elevated-temperature fluids, possibly associated with volcanism of the Marysvale volcanic complex, dissolved microcrystalline quartz from abundant glass shards in the volcaniclastic unit. Subsequent cooling of fluids caused dissolution of spar and micrite within limestone beds and the precipitation of microcrystalline quartz, thus forming the silicified layers of the Brian Head Formation.
期刊介绍:
Rocky Mountain Geology (formerly Contributions to Geology) is published twice yearly by the Department of Geology and Geophysics at the University of Wyoming. The focus of the journal is regional geology and paleontology of the Rocky Mountains and adjacent areas of western North America. This high-impact, scholarly journal, is an important resource for professional earth scientists. The high-quality, refereed articles report original research by top specialists in all aspects of geology and paleontology in the greater Rocky Mountain region.