The Determinants of Fish Catch: A Quantile Regression Approach

Mary Pleños
{"title":"The Determinants of Fish Catch: A Quantile Regression Approach","authors":"Mary Pleños","doi":"10.22630/prs.2021.21.2.6","DOIUrl":null,"url":null,"abstract":"The goal of this study is to use quantile regression (QR) to find predictors of fishers’ catch and compare it with OLS regression. The heterogeneous association across the different quantiles of the catch distribution was investigated using QR analysis. The findings reveal that the effect changes depending on where a fisher is in the catch distribution. In the OLS, there are several non-significant predictors that appear to be significant in quantile regression. By OLS regression, demographic variables have little effect on fishers’ catch; but, in quantile regression, marital status, fishing hours, and use of motorized boats appeared to have a relatively high impact at the top of the distribution.","PeriodicalId":34485,"journal":{"name":"Zeszyty Naukowe Szkoly Glownej Gospodarstwa Wiejskiego w Warszawie Problemy Rolnictwa Swiatowego","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeszyty Naukowe Szkoly Glownej Gospodarstwa Wiejskiego w Warszawie Problemy Rolnictwa Swiatowego","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/prs.2021.21.2.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of this study is to use quantile regression (QR) to find predictors of fishers’ catch and compare it with OLS regression. The heterogeneous association across the different quantiles of the catch distribution was investigated using QR analysis. The findings reveal that the effect changes depending on where a fisher is in the catch distribution. In the OLS, there are several non-significant predictors that appear to be significant in quantile regression. By OLS regression, demographic variables have little effect on fishers’ catch; but, in quantile regression, marital status, fishing hours, and use of motorized boats appeared to have a relatively high impact at the top of the distribution.
捕鱼量的决定因素:分位数回归方法
本研究的目的是使用分位数回归(QR)来寻找渔民捕捞的预测因子,并将其与OLS回归进行比较。利用QR分析研究了捕获分布不同分位数之间的异质性关联。研究结果表明,影响的变化取决于渔民在渔获分布中的位置。在OLS中,有几个不显著的预测因子在分位数回归中显着。通过OLS回归,人口统计变量对渔民的捕捞量影响不大;但是,在分位数回归中,婚姻状况、捕鱼时间和摩托艇的使用似乎在分布的顶部具有相对较高的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
5
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信