C. Douglas, F. Furtado, V. Ginting, M. Mendes, F. Pereira, M. Piri
{"title":"On the development of a high-performance tool for the simulation of CO2 injection into deep saline aquifers","authors":"C. Douglas, F. Furtado, V. Ginting, M. Mendes, F. Pereira, M. Piri","doi":"10.2113/GSROCKY.45.2.151","DOIUrl":null,"url":null,"abstract":"We report on the development of a multiscale parallel simulator for porous media flow problems. We combine state-of-the-art numerical techniques in a new object-oriented, high-performance simulation tool. The new multiscale parallel software will adapt itself to the type and number of available processing cores. The combination of: physically based operator splitting for multiscale time discretization of nonlinear systems of partial differential equations arising in multiphase flows in porous media, domain decomposition for the parallel solution of elliptic and parabolic problems, and semi-discrete central finite volume schemes for hyperbolic systems allows us to produce new very accurate simulations of multiphase flow in porous media problems that are of interest in many areas of science and technology, such as petroleum reservoir and environmental engineering. The new simulation code may aid the assessment and monitoring of CO 2 sequestration projects by providing accurate predictions of the migration and trapping of injected CO 2 plumes.","PeriodicalId":34958,"journal":{"name":"Rocky Mountain Geology","volume":"45 1","pages":"151-161"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2113/GSROCKY.45.2.151","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rocky Mountain Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/GSROCKY.45.2.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 4
Abstract
We report on the development of a multiscale parallel simulator for porous media flow problems. We combine state-of-the-art numerical techniques in a new object-oriented, high-performance simulation tool. The new multiscale parallel software will adapt itself to the type and number of available processing cores. The combination of: physically based operator splitting for multiscale time discretization of nonlinear systems of partial differential equations arising in multiphase flows in porous media, domain decomposition for the parallel solution of elliptic and parabolic problems, and semi-discrete central finite volume schemes for hyperbolic systems allows us to produce new very accurate simulations of multiphase flow in porous media problems that are of interest in many areas of science and technology, such as petroleum reservoir and environmental engineering. The new simulation code may aid the assessment and monitoring of CO 2 sequestration projects by providing accurate predictions of the migration and trapping of injected CO 2 plumes.
期刊介绍:
Rocky Mountain Geology (formerly Contributions to Geology) is published twice yearly by the Department of Geology and Geophysics at the University of Wyoming. The focus of the journal is regional geology and paleontology of the Rocky Mountains and adjacent areas of western North America. This high-impact, scholarly journal, is an important resource for professional earth scientists. The high-quality, refereed articles report original research by top specialists in all aspects of geology and paleontology in the greater Rocky Mountain region.