Chebyshev collocation method for solving second order ODEs using integration matrices

K. Lovetskiy, D. Kulyabov, L. Sevastianov, Stepan V. Sergeev
{"title":"Chebyshev collocation method for solving second order ODEs using integration matrices","authors":"K. Lovetskiy, D. Kulyabov, L. Sevastianov, Stepan V. Sergeev","doi":"10.22363/2658-4670-2023-31-2-150-163","DOIUrl":null,"url":null,"abstract":"The spectral collocation method for solving two-point boundary value problems for second order differential equations is implemented, based on representing the solution as an expansion in Chebyshev polynomials. The approach allows a stable calculation of both the spectral representation of the solution and its pointwise representation on any required grid in the definition domain of the equation and additional conditions of the multipoint problem. For the effective construction of SLAE, the solution of which gives the desired coefficients, the Chebyshev matrices of spectral integration are actively used. The proposed algorithms have a high accuracy for moderate-dimension systems of linear algebraic equations. The matrix of the system remains well-conditioned and, with an increase in the number of collocation points, allows finding solutions with ever-increasing accuracy.","PeriodicalId":34192,"journal":{"name":"Discrete and Continuous Models and Applied Computational Science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Models and Applied Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/2658-4670-2023-31-2-150-163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The spectral collocation method for solving two-point boundary value problems for second order differential equations is implemented, based on representing the solution as an expansion in Chebyshev polynomials. The approach allows a stable calculation of both the spectral representation of the solution and its pointwise representation on any required grid in the definition domain of the equation and additional conditions of the multipoint problem. For the effective construction of SLAE, the solution of which gives the desired coefficients, the Chebyshev matrices of spectral integration are actively used. The proposed algorithms have a high accuracy for moderate-dimension systems of linear algebraic equations. The matrix of the system remains well-conditioned and, with an increase in the number of collocation points, allows finding solutions with ever-increasing accuracy.
利用积分矩阵求解二阶ode的Chebyshev配置法
在将二阶微分方程两点边值问题表示为切比雪夫多项式展开的基础上,实现了求解二阶微分方程两点边值问题的谱配点法。该方法允许稳定地计算解的谱表示及其在方程定义域中的任何所需网格上的点向表示和多点问题的附加条件。为了有效地构造SLAE,积极使用谱积分的切比雪夫矩阵,其解给出了期望系数。所提出的算法对中等维线性代数方程组具有较高的精度。系统的矩阵保持良好的条件,并且随着搭配点数量的增加,可以以不断提高的精度找到解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
20
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信