Hyperbolic Navier-Stokes equations in three space dimensions

IF 0.8 4区 数学 Q2 MATHEMATICS
Filomat Pub Date : 2023-01-01 DOI:10.2298/fil2307209a
Bouthaina Abdelhedi
{"title":"Hyperbolic Navier-Stokes equations in three space dimensions","authors":"Bouthaina Abdelhedi","doi":"10.2298/fil2307209a","DOIUrl":null,"url":null,"abstract":"We consider in this paper a hyperbolic quasilinear version of the Navier-Stokes equations in three space dimensions, obtained by using Cattaneo type law instead of a Fourier law. In our earlier work [2], we proved the global existence and uniqueness of solutions for initial data small enough in the space H4(R3)3 ? H3(R3)3. In this paper, we refine our previous result in [2], we establish the existence under a significantly lower regularity. We first prove the local existence and uniqueness of solution, for initial data in the space H5 2 +?(R3)3 ?H32 +?(R3)3, ? > 0. Under weaker smallness assumptions on the initial data and the forcing term, we prove the global existence of solutions. Finally, we show that if ? is close to 0, then the solution of the perturbed equation is close to the solution of the classical Navier-Stokes equations.","PeriodicalId":12305,"journal":{"name":"Filomat","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Filomat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2307209a","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We consider in this paper a hyperbolic quasilinear version of the Navier-Stokes equations in three space dimensions, obtained by using Cattaneo type law instead of a Fourier law. In our earlier work [2], we proved the global existence and uniqueness of solutions for initial data small enough in the space H4(R3)3 ? H3(R3)3. In this paper, we refine our previous result in [2], we establish the existence under a significantly lower regularity. We first prove the local existence and uniqueness of solution, for initial data in the space H5 2 +?(R3)3 ?H32 +?(R3)3, ? > 0. Under weaker smallness assumptions on the initial data and the forcing term, we prove the global existence of solutions. Finally, we show that if ? is close to 0, then the solution of the perturbed equation is close to the solution of the classical Navier-Stokes equations.
三维空间中的双曲Navier-Stokes方程
本文考虑了三维空间中Navier-Stokes方程的双曲拟线性形式,它是用Cattaneo型定律代替傅立叶定律得到的。在我们早期的工作[2]中,我们证明了在空间H4(R3)3 ?中足够小的初始数据解的全局存在唯一性。H3 (R3) 3。在本文中,我们改进了之前在[2]中的结果,我们建立了在显著低正则性下的存在性。我们首先证明了解的局部存在唯一性,对于空间H5 2 +?(R3)3 ?H32 +?(R3)3, ?> 0。在初始数据和强迫项的较小假设下,我们证明了解的全局存在性。最后,我们证明了if ?则摄动方程的解接近于经典Navier-Stokes方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Filomat
Filomat MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.20
自引率
0.00%
发文量
132
审稿时长
9 months
期刊介绍: The journal publishes original papers in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信