Generalized fractional integrals in the vanishing generalized weighted local and global Morrey spaces

Pub Date : 2023-01-01 DOI:10.2298/fil2306893k
A. Kucukaslan
{"title":"Generalized fractional integrals in the vanishing generalized weighted local and global Morrey spaces","authors":"A. Kucukaslan","doi":"10.2298/fil2306893k","DOIUrl":null,"url":null,"abstract":"In this paper, we prove the boundedness of generalized fractional integral operators I? in the vanishing generalized weighted Morrey-type spaces, such as vanishing generalized weighted local Morrey spaces and vanishing generalized weighted global Morrey spaces by using weighted Lp estimates over balls. In more detail, we obtain the Spanne-type boundedness of the generalized fractional integral operators I? in the vanishing generalized weighted local Morrey spaces with wq ? A1+ q/p' for 1 < p < q < ?, and from the vanishing generalized weighted local Morrey spaces to the vanishing generalized weighted weak local Morrey spaces with w A1,q for p = 1, 1 < q < ?. We also prove the Adams-type boundedness of the generalized fractional integral operators I? in the vanishing generalized weighted global Morrey spaces with w Ap,q for 1 < p < q < ? and from the vanishing generalized weighted global Morrey spaces to the vanishing generalized weighted weak global Morrey spaces with w A1,q for p = 1, 1 < q < ?. The our all weight functions belong to Muckenhoupt-Weeden classes Ap,q.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2306893k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove the boundedness of generalized fractional integral operators I? in the vanishing generalized weighted Morrey-type spaces, such as vanishing generalized weighted local Morrey spaces and vanishing generalized weighted global Morrey spaces by using weighted Lp estimates over balls. In more detail, we obtain the Spanne-type boundedness of the generalized fractional integral operators I? in the vanishing generalized weighted local Morrey spaces with wq ? A1+ q/p' for 1 < p < q < ?, and from the vanishing generalized weighted local Morrey spaces to the vanishing generalized weighted weak local Morrey spaces with w A1,q for p = 1, 1 < q < ?. We also prove the Adams-type boundedness of the generalized fractional integral operators I? in the vanishing generalized weighted global Morrey spaces with w Ap,q for 1 < p < q < ? and from the vanishing generalized weighted global Morrey spaces to the vanishing generalized weighted weak global Morrey spaces with w A1,q for p = 1, 1 < q < ?. The our all weight functions belong to Muckenhoupt-Weeden classes Ap,q.
分享
查看原文
消失广义加权局部和全局Morrey空间中的广义分数阶积分
本文证明了广义分数阶积分算子的有界性。在消失广义加权Morrey型空间中,如消失广义加权局部Morrey空间和消失广义加权全局Morrey空间,利用球上的加权Lp估计。更详细地,我们得到了广义分数阶积分算子I?在消亡广义加权局部Morrey空间中从消失广义加权局部Morrey空间到消失广义加权弱局部Morrey空间,对于p = 1,1 < q < ?证明了广义分数阶积分算子的adams型有界性。在wap,q为1 < p < q < ?的消失广义加权全局Morrey空间中从消失广义加权整体Morrey空间到w A1,q对于p = 1,1 < q < ?的消失广义加权弱整体Morrey空间。我们所有的权函数都属于Muckenhoupt-Weeden类Ap,q。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信