On the Roman domination problem of some Johnson graphs

Pub Date : 2023-01-01 DOI:10.2298/fil2307067z
Tatjana Zec
{"title":"On the Roman domination problem of some Johnson graphs","authors":"Tatjana Zec","doi":"10.2298/fil2307067z","DOIUrl":null,"url":null,"abstract":"A Roman domination function (RDF) on a graph G with a set of vertices V = V(G) is a function f : V ? {0, 1, 2} which satisfies the condition that each vertex v ? V such that f (v) = 0 is adjacent to at least one vertex u such that f (u) = 2. The minimum weight value of an RDF on graph G is called the Roman domination number (RDN) of G and it is denoted by ?R(G). An RDF for which ?R(G) is achieved is called a ?R(G)-function. This paper considers Roman domination problem for Johnson graphs Jn,2 and Jn,3. For Jn,2, n ? 4 it is proved that ?R(Jn,2) = n ? 1. New lower and upper bounds for Jn,3, n ? 6 are derived using results on the minimal coverings of pairs by triples. These bounds quadratically depend on dimension n.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2307067z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Roman domination function (RDF) on a graph G with a set of vertices V = V(G) is a function f : V ? {0, 1, 2} which satisfies the condition that each vertex v ? V such that f (v) = 0 is adjacent to at least one vertex u such that f (u) = 2. The minimum weight value of an RDF on graph G is called the Roman domination number (RDN) of G and it is denoted by ?R(G). An RDF for which ?R(G) is achieved is called a ?R(G)-function. This paper considers Roman domination problem for Johnson graphs Jn,2 and Jn,3. For Jn,2, n ? 4 it is proved that ?R(Jn,2) = n ? 1. New lower and upper bounds for Jn,3, n ? 6 are derived using results on the minimal coverings of pairs by triples. These bounds quadratically depend on dimension n.
分享
查看原文
Johnson图的罗马支配问题
具有一组顶点V = V(G)的图G上的罗马支配函数(RDF)是函数f: V ?{0,1,2}满足每个顶点v ?使得f (V) = 0的V与至少一个顶点u相邻使得f (u) = 2。图G上RDF的最小权值称为图G的罗马支配数(RDN),用?R(G)表示。实现R(G)的RDF称为R(G)函数。本文研究了Johnson图Jn,2和Jn,3的罗马支配问题。对于Jn,2, n ?证明了?R(Jn,2) = n ?1. 新的Jn 3 n的下界和上界?6是由三元组对的最小覆盖的结果导出的。这些边界二次依赖于维数n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信