{"title":"On the Roman domination problem of some Johnson graphs","authors":"Tatjana Zec","doi":"10.2298/fil2307067z","DOIUrl":null,"url":null,"abstract":"A Roman domination function (RDF) on a graph G with a set of vertices V = V(G) is a function f : V ? {0, 1, 2} which satisfies the condition that each vertex v ? V such that f (v) = 0 is adjacent to at least one vertex u such that f (u) = 2. The minimum weight value of an RDF on graph G is called the Roman domination number (RDN) of G and it is denoted by ?R(G). An RDF for which ?R(G) is achieved is called a ?R(G)-function. This paper considers Roman domination problem for Johnson graphs Jn,2 and Jn,3. For Jn,2, n ? 4 it is proved that ?R(Jn,2) = n ? 1. New lower and upper bounds for Jn,3, n ? 6 are derived using results on the minimal coverings of pairs by triples. These bounds quadratically depend on dimension n.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2307067z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A Roman domination function (RDF) on a graph G with a set of vertices V = V(G) is a function f : V ? {0, 1, 2} which satisfies the condition that each vertex v ? V such that f (v) = 0 is adjacent to at least one vertex u such that f (u) = 2. The minimum weight value of an RDF on graph G is called the Roman domination number (RDN) of G and it is denoted by ?R(G). An RDF for which ?R(G) is achieved is called a ?R(G)-function. This paper considers Roman domination problem for Johnson graphs Jn,2 and Jn,3. For Jn,2, n ? 4 it is proved that ?R(Jn,2) = n ? 1. New lower and upper bounds for Jn,3, n ? 6 are derived using results on the minimal coverings of pairs by triples. These bounds quadratically depend on dimension n.