Some applications of p-(DPL) sets

Pub Date : 2023-01-01 DOI:10.2298/fil2305367a
M. Alikhani
{"title":"Some applications of p-(DPL) sets","authors":"M. Alikhani","doi":"10.2298/fil2305367a","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new class of subsets of class bounded linear operators between Banach spaces which is called p-(DPL) sets. Then, the relationship between these sets with equicompact sets is investigated. Moreover, we define p-version of Right sequentially continuous differentiable mappings and get some characterizations of these mappings. Finally, we prove that a mapping f : X ? Y between real Banach spaces is Fr?chet differentiable and f? takes bounded sets into p-(DPL) sets if and only if f may be written in the form f = 1?S where the intermediate space is normed, S is a Dunford-Pettis p-convergent operator, and g is a G?teaux differentiable mapping with some additional properties.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2305367a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a new class of subsets of class bounded linear operators between Banach spaces which is called p-(DPL) sets. Then, the relationship between these sets with equicompact sets is investigated. Moreover, we define p-version of Right sequentially continuous differentiable mappings and get some characterizations of these mappings. Finally, we prove that a mapping f : X ? Y between real Banach spaces is Fr?chet differentiable and f? takes bounded sets into p-(DPL) sets if and only if f may be written in the form f = 1?S where the intermediate space is normed, S is a Dunford-Pettis p-convergent operator, and g is a G?teaux differentiable mapping with some additional properties.
分享
查看原文
p-(DPL)集的一些应用
本文引入了Banach空间间一类有界线性算子的一个新的子集,称为p-(DPL)集。然后,研究了这些集合与等紧集合之间的关系。此外,我们定义了右序列连续可微映射的p型,并得到了这些映射的一些刻画。最后,我们证明了映射f: X ?实巴拿赫空间之间的Y等于Fr?可微的和f?取有界集合为p-(DPL)集合当且仅当f可以写成f = 1?S,其中中间空间是赋范的,S是Dunford-Pettis p收敛算子,g是g ?具有一些附加性质的托可微映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信