Threshold dynamics of an age-space structured brucellosis model with nonlinear incidence rate on a heterogeneous environment

Pub Date : 2023-01-01 DOI:10.2298/fil2304989a
E. Avila-Vales, Ángel G. C. Pérez
{"title":"Threshold dynamics of an age-space structured brucellosis model with nonlinear incidence rate on a heterogeneous environment","authors":"E. Avila-Vales, Ángel G. C. Pérez","doi":"10.2298/fil2304989a","DOIUrl":null,"url":null,"abstract":"We propose an age-space structured brucellosis model that includes diffusion with heterogeneous coefficients and a general nonlinear incidence rate. The renewal process is used to calculate the next generation operator, and the basic reproduction number R0 is defined by the spectral radius of the next generation operator. We prove that R0 governs the threshold dynamics of the brucellosis model: when R0 < 1 the disease dies out, and when R0 > 1 the disease persists.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2304989a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an age-space structured brucellosis model that includes diffusion with heterogeneous coefficients and a general nonlinear incidence rate. The renewal process is used to calculate the next generation operator, and the basic reproduction number R0 is defined by the spectral radius of the next generation operator. We prove that R0 governs the threshold dynamics of the brucellosis model: when R0 < 1 the disease dies out, and when R0 > 1 the disease persists.
分享
查看原文
异质环境下具有非线性发病率的年龄空间结构布鲁氏菌病模型的阈值动力学
我们提出了一个年龄空间结构的布鲁氏菌病模型,该模型包括具有非均匀系数的扩散和一般非线性发病率。更新过程用于计算下一代算子,基本再现数R0由下一代算子的谱半径定义。我们证明R0控制着布鲁氏菌病模型的阈值动力学:当R0 < 1时,疾病消失,当R0 < 0 1时,疾病持续存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信