A refinement of the Cauchy-Schwarz inequality accompanied by new numerical radius upper bounds

Pub Date : 2023-01-01 DOI:10.2298/fil2303971a
Mohammed Al-Dolat, Imad Jaradat
{"title":"A refinement of the Cauchy-Schwarz inequality accompanied by new numerical radius upper bounds","authors":"Mohammed Al-Dolat, Imad Jaradat","doi":"10.2298/fil2303971a","DOIUrl":null,"url":null,"abstract":"This present work aims to ameliorate the celebrated Cauchy-Schwarz inequality and provide several new consequences associated with the numerical radius upper bounds of Hilbert space operators. More precisely, for arbitrary a, b ? H and ? ? 0, we show that |?a,b?|2 ? 1 ? + 1 ?a??b?|?a, b?| + ?/?+1 ?a?2?b?2 ? ?a?2?b?2. As a consequence, we provide several new upper bounds for the numerical radius that refine and generalize some of Kittaneh?s results in [A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Math. 2003;158:11-17] and [Cauchy-Schwarz type inequalities and applications to numerical radius inequalities. Math. Inequal. Appl. 2020;23:1117-1125], respectively. In particular, for arbitrary A, B ? B(H) and ? ? 0, we show the following sharp upper bound w2 (B*A) ? 1/2?+2 ?|A|2 + B|2?w(B*A)+ ?/2?+2 ?|A|4 + |B?4, with equality holds when A=B= (0100). It is also worth mentioning here that some specific values of ? ? 0 provide more accurate estimates for the numerical radius. Finally, some related upper bounds are also provided.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2303971a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This present work aims to ameliorate the celebrated Cauchy-Schwarz inequality and provide several new consequences associated with the numerical radius upper bounds of Hilbert space operators. More precisely, for arbitrary a, b ? H and ? ? 0, we show that |?a,b?|2 ? 1 ? + 1 ?a??b?|?a, b?| + ?/?+1 ?a?2?b?2 ? ?a?2?b?2. As a consequence, we provide several new upper bounds for the numerical radius that refine and generalize some of Kittaneh?s results in [A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Math. 2003;158:11-17] and [Cauchy-Schwarz type inequalities and applications to numerical radius inequalities. Math. Inequal. Appl. 2020;23:1117-1125], respectively. In particular, for arbitrary A, B ? B(H) and ? ? 0, we show the following sharp upper bound w2 (B*A) ? 1/2?+2 ?|A|2 + B|2?w(B*A)+ ?/2?+2 ?|A|4 + |B?4, with equality holds when A=B= (0100). It is also worth mentioning here that some specific values of ? ? 0 provide more accurate estimates for the numerical radius. Finally, some related upper bounds are also provided.
分享
查看原文
具有新的数值半径上界的Cauchy-Schwarz不等式的改进
本文旨在改进著名的Cauchy-Schwarz不等式,并提供与Hilbert空间算子数值半径上界相关的几个新结果。更准确地说,对于任意的a b ?H和?? 0,我们显示|?a,b?| 2 ?1 ? + 1 ?a? b? b| ?a、b吗?| + /?2 + 1 ? ? ? ?2呢?一个2 ? b ? 2。因此,我们提供了几个新的数值半径上界,这些上界改进和推广了Kittaneh?得到了一个数值半径不等式和Frobenius伴矩阵的数值半径估计。[j] .数学学报,2003;58(1):11-17。数学。不平等的。[app . 2020;23:1117-1125]。特别是对于任意的A B ?B(H)和?? 0,我们给出下面的明显上界w2 (B*A) ?半吗?+2 ?|A|2 + B|2?w(B*A)+ ?/2?+2 ?| a |4 + | b ?4、当A=B=(0100)时等式成立。这里还值得一提的是?? 0为数值半径提供了更准确的估计。最后给出了相关的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信