Existence and uh-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions

Pub Date : 2023-01-01 DOI:10.2298/fil2304053z
Kaihong Zhao
{"title":"Existence and uh-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions","authors":"Kaihong Zhao","doi":"10.2298/fil2304053z","DOIUrl":null,"url":null,"abstract":"The Langevin equation is a very important mathematical model in describing the random motion of particles. The fractional Langevin equation is a powerful tool in complex viscoelasticity. Therefore, this paper focuses on a class of nonlinear higher-order Hadamard fractional Langevin equation with integral boundary value conditions. Firstly, we employ successive approximation and Mittag-Leffler function to transform the differential equation into an equivalent integral equation. Then the existence and uniqueness of the solution are obtained by using the fixed point theory. Meanwhile, the Ulam-Hyers (UH) stability is proved by inequality technique and direct analysis.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2304053z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The Langevin equation is a very important mathematical model in describing the random motion of particles. The fractional Langevin equation is a powerful tool in complex viscoelasticity. Therefore, this paper focuses on a class of nonlinear higher-order Hadamard fractional Langevin equation with integral boundary value conditions. Firstly, we employ successive approximation and Mittag-Leffler function to transform the differential equation into an equivalent integral equation. Then the existence and uniqueness of the solution are obtained by using the fixed point theory. Meanwhile, the Ulam-Hyers (UH) stability is proved by inequality technique and direct analysis.
分享
查看原文
一类基于Mittag-Leffler函数的非线性高阶Hadamard分数阶Langevin方程积分边问题的存在性和不稳定性
朗之万方程是描述粒子随机运动的一个非常重要的数学模型。分数阶朗之万方程是研究复杂粘弹性的有力工具。因此,本文研究了一类具有积分边值条件的非线性高阶Hadamard分数阶Langevin方程。首先,利用逐次逼近和Mittag-Leffler函数将微分方程转化为等效积分方程。然后利用不动点理论得到了解的存在唯一性。同时,通过不等式技术和直接分析证明了Ulam-Hyers (UH)的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信