Representation of essentially semi regular linear relations and perturbations

Pub Date : 2023-01-01 DOI:10.2298/fil2302443k
Sonia Keskes, M. Mnif
{"title":"Representation of essentially semi regular linear relations and perturbations","authors":"Sonia Keskes, M. Mnif","doi":"10.2298/fil2302443k","DOIUrl":null,"url":null,"abstract":"In the case of linear operator the property P(B, k) was introduced by M.A. Kaashoek. In this paper, we characterize the essentially semi regular linear relation in terms of the property P(B, k). After that and as an application of this result we give some connection between essentially semi regular and semi regular linear relations. Further, we will give some supplementary conditions on essentially semi regular linear relation to be semi Fredholm. Then, we analyze the stability of the class of essentially semi regular linear relations under small perturbations and Riesz operators. Finally, we study some properties of the essentially semi regular spectrum of a linear relation and we establish a spectral mapping theorem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2302443k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the case of linear operator the property P(B, k) was introduced by M.A. Kaashoek. In this paper, we characterize the essentially semi regular linear relation in terms of the property P(B, k). After that and as an application of this result we give some connection between essentially semi regular and semi regular linear relations. Further, we will give some supplementary conditions on essentially semi regular linear relation to be semi Fredholm. Then, we analyze the stability of the class of essentially semi regular linear relations under small perturbations and Riesz operators. Finally, we study some properties of the essentially semi regular spectrum of a linear relation and we establish a spectral mapping theorem.
分享
查看原文
本质上半正则线性关系和摄动的表示
在线性算子的情况下,由M.A. Kaashoek引入了性质P(B, k)。本文用性质P(B, k)刻画了本质半正则线性关系,然后作为这个结果的一个应用,给出了本质半正则与半正则线性关系之间的一些联系。进一步给出了本质上半正则线性关系为半Fredholm的一些补充条件。然后,我们分析了一类本质上半正则线性关系在小扰动和Riesz算子下的稳定性。最后,我们研究了线性关系的本质半正则谱的一些性质,并建立了谱映射定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信