Left and right resolvents and new characterizations of left and right generalized Drazin invertible operators

Pub Date : 2023-01-01 DOI:10.2298/fil2301021o
Djalal Ounadjela, B. Messirdi, Sofiane Messirdi
{"title":"Left and right resolvents and new characterizations of left and right generalized Drazin invertible operators","authors":"Djalal Ounadjela, B. Messirdi, Sofiane Messirdi","doi":"10.2298/fil2301021o","DOIUrl":null,"url":null,"abstract":"Left and right resolvents of left and right generalized Drazin invertible operators are introduced in this paper. The construction of left and right resolvents allows us to find, in terms of the coefficients of Laurent series, new representation results for left and right generalized Drazin inverses and the associated spectral projections. Fundamental characterizations of left and right generalized Drazin invertible operators are also obtained, using essentially the range, the quasi-nilpotent part and the analytic core.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/fil2301021o","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Left and right resolvents of left and right generalized Drazin invertible operators are introduced in this paper. The construction of left and right resolvents allows us to find, in terms of the coefficients of Laurent series, new representation results for left and right generalized Drazin inverses and the associated spectral projections. Fundamental characterizations of left and right generalized Drazin invertible operators are also obtained, using essentially the range, the quasi-nilpotent part and the analytic core.
分享
查看原文
左右广义Drazin可逆算子的左右解析和新刻画
介绍了左、右广义Drazin可逆算子的左解和右解。左、右解析的构造使我们能够根据Laurent级数的系数找到左、右广义Drazin逆和相关的谱投影的新表示结果。利用范围、拟幂零部分和解析核,得到了左右广义Drazin可逆算子的基本刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信