Mirko Dinulović, M. Trninic, B. Rašuo, Dejan Kožović
{"title":"Methodology for aeroacoustic noise analysis of 3-bladed h-Darrieus wind turbine","authors":"Mirko Dinulović, M. Trninic, B. Rašuo, Dejan Kožović","doi":"10.2298/tsci2301061d","DOIUrl":null,"url":null,"abstract":"The present paper presents the aeroacoustic calculation methodology for the H-Darrieus wind turbine. The CFD analysis, for different wind turbine blades? angles of attack, coupled with the noise analysis, based on Lighthill and Prudmann models is performed. This type of turbine is of particular interest since it is insensitive to wind direction and can be used in urban areas. In this study commercial software, ANSYS is used for CFD and aeroacoustic analysis. The required turbulent flow field is calculated based on the standard k-? model, and reequired model constants are obtained experimentally in a low-Mach number wind tunnel. The noise levels generated by operating turbine are calculated based on Lighthill and Proudman's aeroacoustic theories. It was found that the methodology presented can be efficiently used in noise analysis of vertical axes wind turbines and due to recent strict noise regulations has to be deployed at the early design stages.","PeriodicalId":23125,"journal":{"name":"Thermal Science","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/tsci2301061d","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The present paper presents the aeroacoustic calculation methodology for the H-Darrieus wind turbine. The CFD analysis, for different wind turbine blades? angles of attack, coupled with the noise analysis, based on Lighthill and Prudmann models is performed. This type of turbine is of particular interest since it is insensitive to wind direction and can be used in urban areas. In this study commercial software, ANSYS is used for CFD and aeroacoustic analysis. The required turbulent flow field is calculated based on the standard k-? model, and reequired model constants are obtained experimentally in a low-Mach number wind tunnel. The noise levels generated by operating turbine are calculated based on Lighthill and Proudman's aeroacoustic theories. It was found that the methodology presented can be efficiently used in noise analysis of vertical axes wind turbines and due to recent strict noise regulations has to be deployed at the early design stages.
期刊介绍:
The main aims of Thermal Science
to publish papers giving results of the fundamental and applied research in different, but closely connected fields:
fluid mechanics (mainly turbulent flows), heat transfer, mass transfer, combustion and chemical processes
in single, and specifically in multi-phase and multi-component flows
in high-temperature chemically reacting flows
processes present in thermal engineering, energy generating or consuming equipment, process and chemical engineering equipment and devices, ecological engineering,
The important characteristic of the journal is the orientation to the fundamental results of the investigations of different physical and chemical processes, always jointly present in real conditions, and their mutual influence. To publish papers written by experts from different fields: mechanical engineering, chemical engineering, fluid dynamics, thermodynamics and related fields. To inform international scientific community about the recent, and most prominent fundamental results achieved in the South-East European region, and particularly in Serbia, and - vice versa - to inform the scientific community from South-East European Region about recent fundamental and applied scientific achievements in developed countries, serving as a basis for technology development. To achieve international standards of the published papers, by the engagement of experts from different countries in the International Advisory board.