Z. Golubovic, M. Travica, Isaak Trajković, A. Petrovic, Ž. Mišković, N. Mitrović
{"title":"Investigation of thermal and dimensional behavior of 3-D printed materials using thermal imaging and 3-D scanning","authors":"Z. Golubovic, M. Travica, Isaak Trajković, A. Petrovic, Ž. Mišković, N. Mitrović","doi":"10.2298/tsci2301021g","DOIUrl":null,"url":null,"abstract":"Fused deposition modeling is one of the most widely used 3-D printing technologies, among other additive manufacturing processes, because it is easy to use, can produce parts faster, and the cost of the finished part is low. Printing processes and finished parts are often studied and characterized using different techniques to collect mechanical, numerical, thermal and dimensional data, with the aim of improving and optimizing the result. The first part of this research is based on the observation of temperature changes with a thermal imaging camera during the fused deposition modeling printing process and during the cooling process after printing. Specimens of polylactic acid and polylactic acid-X improved with second-phase particles were prepared to compare the thermal and dimensional properties of the two materials. The obtained results determined the characteristic temperature behavior of the materials. In the second part of the research, a 3-D optical scanner was used to verify the stability and accuracy of the printed specimens over time. The proposed measurement period showed that stabilization of the parameters takes place, and further follow-up should be performed thereafter.","PeriodicalId":23125,"journal":{"name":"Thermal Science","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/tsci2301021g","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fused deposition modeling is one of the most widely used 3-D printing technologies, among other additive manufacturing processes, because it is easy to use, can produce parts faster, and the cost of the finished part is low. Printing processes and finished parts are often studied and characterized using different techniques to collect mechanical, numerical, thermal and dimensional data, with the aim of improving and optimizing the result. The first part of this research is based on the observation of temperature changes with a thermal imaging camera during the fused deposition modeling printing process and during the cooling process after printing. Specimens of polylactic acid and polylactic acid-X improved with second-phase particles were prepared to compare the thermal and dimensional properties of the two materials. The obtained results determined the characteristic temperature behavior of the materials. In the second part of the research, a 3-D optical scanner was used to verify the stability and accuracy of the printed specimens over time. The proposed measurement period showed that stabilization of the parameters takes place, and further follow-up should be performed thereafter.
期刊介绍:
The main aims of Thermal Science
to publish papers giving results of the fundamental and applied research in different, but closely connected fields:
fluid mechanics (mainly turbulent flows), heat transfer, mass transfer, combustion and chemical processes
in single, and specifically in multi-phase and multi-component flows
in high-temperature chemically reacting flows
processes present in thermal engineering, energy generating or consuming equipment, process and chemical engineering equipment and devices, ecological engineering,
The important characteristic of the journal is the orientation to the fundamental results of the investigations of different physical and chemical processes, always jointly present in real conditions, and their mutual influence. To publish papers written by experts from different fields: mechanical engineering, chemical engineering, fluid dynamics, thermodynamics and related fields. To inform international scientific community about the recent, and most prominent fundamental results achieved in the South-East European region, and particularly in Serbia, and - vice versa - to inform the scientific community from South-East European Region about recent fundamental and applied scientific achievements in developed countries, serving as a basis for technology development. To achieve international standards of the published papers, by the engagement of experts from different countries in the International Advisory board.