Elemental composition of soils of the Pur-Taz interfluve

Q4 Agricultural and Biological Sciences
D. Moskovchenko, Elizaveta A. Romanenko
{"title":"Elemental composition of soils of the Pur-Taz interfluve","authors":"D. Moskovchenko, Elizaveta A. Romanenko","doi":"10.19047/0136-1694-2020-103-51-84","DOIUrl":null,"url":null,"abstract":"In order to evaluate the chemical composition of natural background environments of Pur-Taz interfluve (Western Siberia), the mineral components of soils, peats, lichens, and sphagnum mosses have been analyzed. The samples were tested using X-ray fluorescence technology. The average contents of hazardous metals in the soils of the Pur-Taz interfluve are either lower (for Cu, Pb, Zn, Ni, Sr) or equal to (for Hg, Co) the average values of these elements in the Earth's crust. This finding corresponds to the commonly held view that the contents of elements in the soils located in the north of Western Siberia are lower than the world averages. Additionally, in our samples low concentrations of copper and zinc have been observed. Since these microelements are important for soil physiology, this finding indicates unfavorable biochemical conditions in the research area. On the other hand, high concentrations are observed for inactive elements such as Mo, Sn and Zr. The significant differences have been identified in the composition of mineral and organic soil horizons. For instance, the average concentrations of P, Zn and S in organic horizons are 7.1, 8.1 and 18 times greater than in the illuvial mineral horizons, respectively. The intense accumulation of Zn, Cu, Cd, Hg has been recorded, all of them are chalcophiles in the ombrotrophic peat. This means that the chemical composition of soil is largely determined by biological accumulation of chalcophile elements. The content of lithophilic Al, Si, Ti and Zr, coming with dust precipitation from the atmosphere increases in the peat of dwarf shrub-moss-lichen tundras and larch woodlands. The revealed values of the elemental composition of soils can be recommended as background in the course of the environmental monitoring.","PeriodicalId":52755,"journal":{"name":"Biulleten'' Pochvennogo instituta im VV Dokuchaeva","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biulleten'' Pochvennogo instituta im VV Dokuchaeva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19047/0136-1694-2020-103-51-84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 4

Abstract

In order to evaluate the chemical composition of natural background environments of Pur-Taz interfluve (Western Siberia), the mineral components of soils, peats, lichens, and sphagnum mosses have been analyzed. The samples were tested using X-ray fluorescence technology. The average contents of hazardous metals in the soils of the Pur-Taz interfluve are either lower (for Cu, Pb, Zn, Ni, Sr) or equal to (for Hg, Co) the average values of these elements in the Earth's crust. This finding corresponds to the commonly held view that the contents of elements in the soils located in the north of Western Siberia are lower than the world averages. Additionally, in our samples low concentrations of copper and zinc have been observed. Since these microelements are important for soil physiology, this finding indicates unfavorable biochemical conditions in the research area. On the other hand, high concentrations are observed for inactive elements such as Mo, Sn and Zr. The significant differences have been identified in the composition of mineral and organic soil horizons. For instance, the average concentrations of P, Zn and S in organic horizons are 7.1, 8.1 and 18 times greater than in the illuvial mineral horizons, respectively. The intense accumulation of Zn, Cu, Cd, Hg has been recorded, all of them are chalcophiles in the ombrotrophic peat. This means that the chemical composition of soil is largely determined by biological accumulation of chalcophile elements. The content of lithophilic Al, Si, Ti and Zr, coming with dust precipitation from the atmosphere increases in the peat of dwarf shrub-moss-lichen tundras and larch woodlands. The revealed values of the elemental composition of soils can be recommended as background in the course of the environmental monitoring.
Pur-Taz断裂带土壤元素组成
为了评价西伯利亚西部普塔兹断裂带自然背景环境的化学成分,对土壤、泥炭、地衣和泥炭苔藓的矿物成分进行了分析。使用x射线荧光技术对样品进行检测。Pur-Taz区间土壤中有害金属的平均含量要么低于(Cu、Pb、Zn、Ni、Sr),要么等于(Hg、Co)这些元素在地壳中的平均值。这一发现与普遍持有的观点相一致,即西伯利亚西部北部土壤中的元素含量低于世界平均水平。此外,在我们的样品中观察到低浓度的铜和锌。由于这些微量元素对土壤生理具有重要意义,这一发现表明研究区域的生化条件不利。另一方面,Mo、Sn和Zr等非活性元素的浓度较高。在矿质层和有机层的组成上存在显著差异。有机层中P、Zn和S的平均浓度分别是洪积矿物层的7.1倍、8.1倍和18倍。Zn、Cu、Cd、Hg在近营养化泥炭中富集富集,均为亲铜元素。这意味着土壤的化学成分在很大程度上是由亲铜元素的生物积累决定的。矮灌木-苔藓-地衣苔原和落叶松林地泥炭中亲石性Al、Si、Ti和Zr的含量随大气降尘而增加。土壤元素组成的揭示值可作为环境监测过程中的背景推荐值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信