{"title":"Numerical investigation on cooling rate in proton exchange membrane fuel cell using propylene glycol fluid","authors":"D. Sahoo, S. Ram, S. Prasath","doi":"10.2298/tsci220429040s","DOIUrl":null,"url":null,"abstract":"In this study, a cooling channel was constructed inside the fuel cell to examine the impact of cooling on proton exchange membrane (PEM) fuel cell performance. The performance of the fuel cell was assessed using four different coolant mixtures: DI100 (100 percent Deionized water), PG10 (90 percent DI water + 10% Propylene Glycol), PG20 (80 percent DI Water + 20% Propylene Glycol), and PG30 (70 percent DI Water + 30% Propylene Glycol). The efficiency of the fuel cell, system temperature, operating parameters, coolant, and cooling channel shape of the fuel cell were tested using a computational fluid dynamics model based on the finite volume approach. The test results showed that the fuel cell performance was good for both single-cell fuel cells and fuel cell stacks at temperatures of 354 k and 360 k, respectively. However, as the membrane became dehydrated above 362 k for single cell fuel cells and after 371 k for fuel cell stacks, performance of the fuel cell decreased and no appreciable improvement was seen. For single cells, the fuel cell showed good performance improvement at PG30 combinations, whereas the best performance in stacks was attained at PG20 combinations.","PeriodicalId":23125,"journal":{"name":"Thermal Science","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2298/tsci220429040s","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a cooling channel was constructed inside the fuel cell to examine the impact of cooling on proton exchange membrane (PEM) fuel cell performance. The performance of the fuel cell was assessed using four different coolant mixtures: DI100 (100 percent Deionized water), PG10 (90 percent DI water + 10% Propylene Glycol), PG20 (80 percent DI Water + 20% Propylene Glycol), and PG30 (70 percent DI Water + 30% Propylene Glycol). The efficiency of the fuel cell, system temperature, operating parameters, coolant, and cooling channel shape of the fuel cell were tested using a computational fluid dynamics model based on the finite volume approach. The test results showed that the fuel cell performance was good for both single-cell fuel cells and fuel cell stacks at temperatures of 354 k and 360 k, respectively. However, as the membrane became dehydrated above 362 k for single cell fuel cells and after 371 k for fuel cell stacks, performance of the fuel cell decreased and no appreciable improvement was seen. For single cells, the fuel cell showed good performance improvement at PG30 combinations, whereas the best performance in stacks was attained at PG20 combinations.
期刊介绍:
The main aims of Thermal Science
to publish papers giving results of the fundamental and applied research in different, but closely connected fields:
fluid mechanics (mainly turbulent flows), heat transfer, mass transfer, combustion and chemical processes
in single, and specifically in multi-phase and multi-component flows
in high-temperature chemically reacting flows
processes present in thermal engineering, energy generating or consuming equipment, process and chemical engineering equipment and devices, ecological engineering,
The important characteristic of the journal is the orientation to the fundamental results of the investigations of different physical and chemical processes, always jointly present in real conditions, and their mutual influence. To publish papers written by experts from different fields: mechanical engineering, chemical engineering, fluid dynamics, thermodynamics and related fields. To inform international scientific community about the recent, and most prominent fundamental results achieved in the South-East European region, and particularly in Serbia, and - vice versa - to inform the scientific community from South-East European Region about recent fundamental and applied scientific achievements in developed countries, serving as a basis for technology development. To achieve international standards of the published papers, by the engagement of experts from different countries in the International Advisory board.