{"title":"Laboratory tests of a residential low-temperature water source heat pump","authors":"V. Mei","doi":"10.2172/5260569","DOIUrl":null,"url":null,"abstract":"A residential unitary low-temperature water-source heat pump was tested in the laboratory. Tests were performed over a broad range of source-water temperature 45 to 70/sup 0/F (7.2 to 21.1/sup 0/C) and water-flow rates 5 to 30 gpm (3.2 X 10/sup -4/m/sup 3//s to 8.2 X 10/sup -4/m/sup 3//s). The heat pump capacity and coefficient of performance (COP) were found to be linearly related to the source-water temperatures. In the heating mode, the capacity and COP increased with increasing source-water temperature and flow rate. In the cooling mode, the capacity and COP decreased with increasing source-water temperature but increased with increasing water-flow rate. However, when an assumed water-pumping power, for a 150 ft (46 m) total head, was taken into account in the COP calculation, it was found that the net COP for both heating and cooling decreased with increasing water-flow rate. For cyclic operation over the tested source-water temperature range, the coefficient of degradation, C /SUB D/, ranged from 0.196 to 0.137 for heating and from 0.131 to 0.161 for cooling. The effect of inlet air humidity was also studied for cooling mode operation. A sample calculation is included in the paper to demonstrate the application of the test resultsmore » in calculating the annual performance factor (APF). The test results are used to form a data base on the performance of a typical residential, unitary low-temperature water-source heat pump.« less","PeriodicalId":91206,"journal":{"name":"ASHRAE transactions","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1983-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASHRAE transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/5260569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A residential unitary low-temperature water-source heat pump was tested in the laboratory. Tests were performed over a broad range of source-water temperature 45 to 70/sup 0/F (7.2 to 21.1/sup 0/C) and water-flow rates 5 to 30 gpm (3.2 X 10/sup -4/m/sup 3//s to 8.2 X 10/sup -4/m/sup 3//s). The heat pump capacity and coefficient of performance (COP) were found to be linearly related to the source-water temperatures. In the heating mode, the capacity and COP increased with increasing source-water temperature and flow rate. In the cooling mode, the capacity and COP decreased with increasing source-water temperature but increased with increasing water-flow rate. However, when an assumed water-pumping power, for a 150 ft (46 m) total head, was taken into account in the COP calculation, it was found that the net COP for both heating and cooling decreased with increasing water-flow rate. For cyclic operation over the tested source-water temperature range, the coefficient of degradation, C /SUB D/, ranged from 0.196 to 0.137 for heating and from 0.131 to 0.161 for cooling. The effect of inlet air humidity was also studied for cooling mode operation. A sample calculation is included in the paper to demonstrate the application of the test resultsmore » in calculating the annual performance factor (APF). The test results are used to form a data base on the performance of a typical residential, unitary low-temperature water-source heat pump.« less