Majorization and the number of bipartite graphs for given vertex degrees

IF 0.6 Q3 MATHEMATICS
A. Berger
{"title":"Majorization and the number of bipartite graphs for given vertex degrees","authors":"A. Berger","doi":"10.22108/TOC.2017.21469","DOIUrl":null,"url":null,"abstract":"The emph{bipartite realisation problem} asks for a pair of non-negative‎, ‎non-increasing integer lists $a:=(a_1,ldots,a_n)$ and $b:=(b_1,ldots,b_{n'})$ if there is a labeled bipartite graph $G(U,V,E)$ (no loops or multiple edges) such that each vertex $u_i in U$ has degree $a_i$ and each vertex $v_i in V$ degree $b_i.$ The Gale-Ryser theorem provides characterisations for the existence of a `realisation' $G(U,V,E)$ that are strongly related to the concept of emph{majorisation}‎. ‎We prove a generalisation; list pair $(a,b)$ has more realisations than $(a',b),$ if $a'$ majorises $a.$ Furthermore‎, ‎we give explicitly list pairs which possess the largest number of realisations under all $(a,b)$ with fixed $n$‎, ‎$n'$ and $m:=sum_{i=1}^n a_i.$ We introduce the notion~emph{minconvex list pairs} for them‎. ‎If $n$ and $n'$ divide $m,$ minconvex list pairs turn in the special case of two constant lists $a=(frac{m}{n},ldots,frac{m}{n})$ and $b=(frac{m}{n'},ldots,frac{m}{n'}).$‎","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"60 1","pages":"19-30"},"PeriodicalIF":0.6000,"publicationDate":"2017-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.21469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

The emph{bipartite realisation problem} asks for a pair of non-negative‎, ‎non-increasing integer lists $a:=(a_1,ldots,a_n)$ and $b:=(b_1,ldots,b_{n'})$ if there is a labeled bipartite graph $G(U,V,E)$ (no loops or multiple edges) such that each vertex $u_i in U$ has degree $a_i$ and each vertex $v_i in V$ degree $b_i.$ The Gale-Ryser theorem provides characterisations for the existence of a `realisation' $G(U,V,E)$ that are strongly related to the concept of emph{majorisation}‎. ‎We prove a generalisation; list pair $(a,b)$ has more realisations than $(a',b),$ if $a'$ majorises $a.$ Furthermore‎, ‎we give explicitly list pairs which possess the largest number of realisations under all $(a,b)$ with fixed $n$‎, ‎$n'$ and $m:=sum_{i=1}^n a_i.$ We introduce the notion~emph{minconvex list pairs} for them‎. ‎If $n$ and $n'$ divide $m,$ minconvex list pairs turn in the special case of two constant lists $a=(frac{m}{n},ldots,frac{m}{n})$ and $b=(frac{m}{n'},ldots,frac{m}{n'}).$‎
给定顶点度的二部图的多数化和数量
emph{二部实现问题}要求一对非负的,非递增的整数列表$a:=(a_1,ldots,a_n)$和$b:=(b_1,ldots,b_{n'})$,如果有一个标记的二部图$G(U,V,E)$(没有环路或多条边),使得U$中的每个顶点$u_i都有阶$a_i$和V$ degree $b_i中的每个顶点$v_i。Gale-Ryser定理为“实现”$G(U,V,E)$的存在性提供了特征,这些特征与强调{多数化}的概念密切相关。我们证明了一个概括;列表对$(a,b)$比$(a',b)有更多的实现,$ if $a'$大写$a。更进一步,我们给出了在所有$(a,b)$具有固定$n$, $n'$和$m的$(a,b)$下具有最大实现数的列表对:=sum_{i=1}^n a_i。我们为它们引入了~emph{最小凸列表对}的概念。如果$n$和$n'$除$m,则$ min凸列表对在两个常量列表的特殊情况下变成$a=(frac{m}{n},ldots,frac{m}{n})$和$b=(frac{m}{n'},ldots,frac{m}{n'}) $
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信