The Varchenko determinant of an oriented matroid

IF 0.6 Q3 MATHEMATICS
H. Randriamaro
{"title":"The Varchenko determinant of an oriented matroid","authors":"H. Randriamaro","doi":"10.22108/TOC.2021.125990.1780","DOIUrl":null,"url":null,"abstract":"Varchenko introduced in 1993 a distance function on the chambers of a hyperplane arrangement that gave rise to a determinant whose entry in position $(C, D)$ is the distance between the chambers $C$ and $D$, and computed that determinant. In 2017, Aguiar and Mahajan provided a generalization of that distance function, and computed the corresponding determinant. This article extends their distance function to the topes of an oriented matroid, and computes the determinant thus defined. Oriented matroids have the nice property to be abstractions of some mathematical structures including hyperplane and sphere arrangements, polytopes, directed graphs, and even chirality in molecular chemistry. Independently and with another method, Hochst\"{a}ttler and Welker also computed in 2019 the same determinant.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"10 1","pages":"213-224"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2021.125990.1780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Varchenko introduced in 1993 a distance function on the chambers of a hyperplane arrangement that gave rise to a determinant whose entry in position $(C, D)$ is the distance between the chambers $C$ and $D$, and computed that determinant. In 2017, Aguiar and Mahajan provided a generalization of that distance function, and computed the corresponding determinant. This article extends their distance function to the topes of an oriented matroid, and computes the determinant thus defined. Oriented matroids have the nice property to be abstractions of some mathematical structures including hyperplane and sphere arrangements, polytopes, directed graphs, and even chirality in molecular chemistry. Independently and with another method, Hochst"{a}ttler and Welker also computed in 2019 the same determinant.
有向矩阵的瓦琴科行列式
Varchenko在1993年引入了超平面排列的腔室上的距离函数,该函数产生了一个行列式,其位置$(C, D)$的入口是腔室$C$和$D$之间的距离,并计算了该行列式。2017年,Aguiar和Mahajan提供了该距离函数的泛化,并计算了相应的行列式。本文将它们的距离函数扩展到有向矩阵的类型,并计算由此定义的行列式。取向拟阵具有很好的性质,可以作为一些数学结构的抽象,包括超平面和球面排列、多面体、有向图,甚至分子化学中的手性。Hochst“{a}ttler和Welker在2019年也独立地用另一种方法计算了相同的行列式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信