Forcing edge detour monophonic number of a graph

IF 0.6 Q3 MATHEMATICS
P. Titus, K. Ganesamoorthy
{"title":"Forcing edge detour monophonic number of a graph","authors":"P. Titus, K. Ganesamoorthy","doi":"10.22108/TOC.2021.119182.1670","DOIUrl":null,"url":null,"abstract":"‎For a connected graph $G=(V,E)$ of order at least two‎, ‎an edge detour monophonic set of $G$ is a set $S$ of vertices such that every edge of $G$ lies on a detour monophonic path joining some pair of vertices in $S$‎. ‎The edge detour monophonic number of $G$ is the minimum cardinality of its edge detour monophonic sets and is denoted by $edm(G)$‎. ‎A subset $T$ of $S$ is a forcing edge detour monophonic subset for $S$ if $S$ is the unique edge detour monophonic set of size $edm(G)$ containing $T$‎. ‎A forcing edge detour monophonic subset for $S$ of minimum cardinality is a minimum forcing edge detour monophonic subset of $S$‎. ‎The forcing edge detour monophonic number $f_{edm}(S)$ in $G$ is the cardinality of a minimum forcing edge detour monophonic subset of $S$‎. ‎The forcing edge detour monophonic number of $G$ is $f_{edm}(G)=min{f_{edm}(S)}$‎, ‎where the minimum is taken over all edge detour monophonic sets $S$ of size $edm(G)$ in $G$‎. ‎We determine bounds for it and find the forcing edge detour monophonic number of certain classes of graphs‎. ‎It is shown that for every pair a‎, ‎b of positive integers with $0leq a","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"66 1","pages":"201-211"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2021.119182.1670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

‎For a connected graph $G=(V,E)$ of order at least two‎, ‎an edge detour monophonic set of $G$ is a set $S$ of vertices such that every edge of $G$ lies on a detour monophonic path joining some pair of vertices in $S$‎. ‎The edge detour monophonic number of $G$ is the minimum cardinality of its edge detour monophonic sets and is denoted by $edm(G)$‎. ‎A subset $T$ of $S$ is a forcing edge detour monophonic subset for $S$ if $S$ is the unique edge detour monophonic set of size $edm(G)$ containing $T$‎. ‎A forcing edge detour monophonic subset for $S$ of minimum cardinality is a minimum forcing edge detour monophonic subset of $S$‎. ‎The forcing edge detour monophonic number $f_{edm}(S)$ in $G$ is the cardinality of a minimum forcing edge detour monophonic subset of $S$‎. ‎The forcing edge detour monophonic number of $G$ is $f_{edm}(G)=min{f_{edm}(S)}$‎, ‎where the minimum is taken over all edge detour monophonic sets $S$ of size $edm(G)$ in $G$‎. ‎We determine bounds for it and find the forcing edge detour monophonic number of certain classes of graphs‎. ‎It is shown that for every pair a‎, ‎b of positive integers with $0leq a
图的强制边绕道单音数
对于至少为2阶的连通图$G=(V,E)$, $G$的边绕行单音集是$S$的顶点集合,使得$G$的每条边都位于连接$S$ $中某些顶点对的绕行单音路径上。$G$的边缘绕行单音数是其边缘绕行单音集的最小基数,用$edm(G)$™表示。$S$的子集$T$是$S$的强制边绕路单音子集,如果$S$是包含$T$的唯一边绕路单音集,其大小为$edm(G)$。最小基数$S$的强制边绕行单音子集是$S$的最小强制边绕行单音子集。$G$中的强制边绕行单音数$f_{edm}(S)$是$S$的最小强制边绕行单音子集的基数。$G$的强制边绕道单音数为$f_{edm}(G)=min{f_{edm}(S)}$ $,其中取$G$ $中大小为$edm(G)$的所有边绕道单音集$S$的最小值。我们确定了它的界,并找到了某些图类的强制边绕道单音数。证明了对于每一对正整数a, b, $0leq a
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信