Upper bounds for the reduced second zagreb index of graphs

IF 0.6 Q3 MATHEMATICS
B. Horoldagva, Tsend-Ayush Selenge, Lkhagva Buyantogtokh, Shiikhar Dorjsembe
{"title":"Upper bounds for the reduced second zagreb index of graphs","authors":"B. Horoldagva, Tsend-Ayush Selenge, Lkhagva Buyantogtokh, Shiikhar Dorjsembe","doi":"10.22108/TOC.2020.125478.1774","DOIUrl":null,"url":null,"abstract":"The graph invariant $RM_2$‎, ‎known under the name reduced second Zagreb index‎, ‎is defined as $RM_2(G)=sum_{uvin E(G)}(d_G(u)-1)(d_G(v)-1)$‎, ‎where $d_G(v)$ is the degree of the vertex $v$ of the graph $G$‎. ‎In this paper‎, ‎we give a tight upper bound of $RM_2$ for the class of graphs of order $n$ and size $m$ with at least one dominating vertex‎. ‎Also‎, ‎we obtain sharp upper bounds on $RM_2$ for all graphs of order $n$ with $k$ dominating vertices and for all graphs of order $n$ with $k$ pendant vertices‎. ‎Finally‎, ‎we give a sharp upper bound on $RM_2$ for all $k$-apex trees of order $n$‎. ‎Moreover‎, ‎the corresponding extremal graphs are characterized‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"10 1","pages":"137-148"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2020.125478.1774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

The graph invariant $RM_2$‎, ‎known under the name reduced second Zagreb index‎, ‎is defined as $RM_2(G)=sum_{uvin E(G)}(d_G(u)-1)(d_G(v)-1)$‎, ‎where $d_G(v)$ is the degree of the vertex $v$ of the graph $G$‎. ‎In this paper‎, ‎we give a tight upper bound of $RM_2$ for the class of graphs of order $n$ and size $m$ with at least one dominating vertex‎. ‎Also‎, ‎we obtain sharp upper bounds on $RM_2$ for all graphs of order $n$ with $k$ dominating vertices and for all graphs of order $n$ with $k$ pendant vertices‎. ‎Finally‎, ‎we give a sharp upper bound on $RM_2$ for all $k$-apex trees of order $n$‎. ‎Moreover‎, ‎the corresponding extremal graphs are characterized‎.
图的约化第二萨格勒布索引的上界
图的不变量$RM_2$ $被定义为$RM_2(G)=sum_{uvin E(G)}(d_G(u)-1)(d_G(v)-1)$ $,其中$d_G(v)$是图$G$ $的顶点$v$的度。本文给出了阶$n$,大小$m$且至少有一个支配顶点的图的紧上界$RM_2$。同样,我们也得到了所有阶$n$图的$k$支配顶点和所有阶$n$图的$k$下垂顶点的$RM_2$的明显上界。最后,我们给出了所有$k$ n阶顶点树$RM_2$的一个明显的上界。此外,对相应的极值图进行了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信