Some results on the comaximal ideal graph of a commutative ring

IF 0.6 Q3 MATHEMATICS
H. Dorbidi, R. Manaviyat
{"title":"Some results on the comaximal ideal graph of a commutative ring","authors":"H. Dorbidi, R. Manaviyat","doi":"10.22108/TOC.2016.15047","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative ring with unity. The comaximal ideal graph of $R$, denoted by $mathcal{C}(R)$, is a graph whose vertices are the proper ideals of $R$ which are not contained in the Jacobson radical of $R$, and two vertices $I_1$ and $I_2$ are adjacent if and only if $I_1 +I_2 = R$. In this paper, we classify all comaximal ideal graphs with finite independence number and present a formula to calculate this number. Also, the domination number of $mathcal{C}(R)$ for a ring $R$ is determined. In the last section, we introduce all planar and toroidal comaximal ideal graphs. Moreover, the commutative rings with isomorphic comaximal ideal graphs are characterized. In particular we show that every finite comaximal ideal graph is isomorphic to some $mathcal{C}(mathbb{Z}_n)$.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"5 1","pages":"9-20"},"PeriodicalIF":0.6000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2016.15047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Let $R$ be a commutative ring with unity. The comaximal ideal graph of $R$, denoted by $mathcal{C}(R)$, is a graph whose vertices are the proper ideals of $R$ which are not contained in the Jacobson radical of $R$, and two vertices $I_1$ and $I_2$ are adjacent if and only if $I_1 +I_2 = R$. In this paper, we classify all comaximal ideal graphs with finite independence number and present a formula to calculate this number. Also, the domination number of $mathcal{C}(R)$ for a ring $R$ is determined. In the last section, we introduce all planar and toroidal comaximal ideal graphs. Moreover, the commutative rings with isomorphic comaximal ideal graphs are characterized. In particular we show that every finite comaximal ideal graph is isomorphic to some $mathcal{C}(mathbb{Z}_n)$.
交换环的极大理想图的一些结果
设$R$是一个有单位的交换环。$R$的最大理想图,用$mathcal{C}(R)$表示,其顶点是$R$的不包含在$R$的Jacobson根中的$R$的固有理想,并且两个顶点$I_1$和$I_2$相邻当且仅当$I_1 +I_2 = R$。本文对所有具有有限独立数的最大理想图进行了分类,并给出了计算有限独立数的公式。此外,还确定了$mathcal{C}(R)$对于环$R$的支配数。在最后一节中,我们介绍了所有平面和环面共极大理想图。此外,还刻画了具有同构共极大理想图的交换环。特别地,我们证明了每一个有限共极大理想图与某个$mathcal{C}(mathbb{Z}_n)$同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信